// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <cstddef>
#include <cstdint>
#include <memory>
#include <string>
#include <utility>
#include <vector>
#include "arrow/buffer.h"
#include "arrow/compare.h"
#include "arrow/result.h"
#include "arrow/status.h"
#include "arrow/tensor.h" // IWYU pragma: export
#include "arrow/type.h"
#include "arrow/util/checked_cast.h"
#include "arrow/util/macros.h"
#include "arrow/util/visibility.h"
namespace arrow {
class MemoryPool;
namespace internal {
ARROW_EXPORT
Status CheckSparseIndexMaximumValue(const std::shared_ptr<DataType>& index_value_type,
const std::vector<int64_t>& shape);
} // namespace internal
// ----------------------------------------------------------------------
// SparseIndex class
struct SparseTensorFormat {
/// EXPERIMENTAL: The index format type of SparseTensor
enum type {
/// Coordinate list (COO) format.
COO,
/// Compressed sparse row (CSR) format.
CSR,
/// Compressed sparse column (CSC) format.
CSC,
/// Compressed sparse fiber (CSF) format.
CSF
};
};
/// \brief EXPERIMENTAL: The base class for the index of a sparse tensor
///
/// SparseIndex describes where the non-zero elements are within a SparseTensor.
///
/// There are several ways to represent this. The format_id is used to
/// distinguish what kind of representation is used. Each possible value of
/// format_id must have only one corresponding concrete subclass of SparseIndex.
class ARROW_EXPORT SparseIndex {
public:
explicit SparseIndex(SparseTensorFormat::type format_id) : format_id_(format_id) {}
virtual ~SparseIndex() = default;
/// \brief Return the identifier of the format type
SparseTensorFormat::type format_id() const { return format_id_; }
/// \brief Return the number of non zero values in the sparse tensor related
/// to this sparse index
virtual int64_t non_zero_length() const = 0;
/// \brief Return the string representation of the sparse index
virtual std::string ToString() const = 0;
virtual Status ValidateShape(const std::vector<int64_t>& shape) const;
protected:
const SparseTensorFormat::type format_id_;
};
namespace internal {
template <typename SparseIndexType>
class SparseIndexBase : public SparseIndex {
public:
SparseIndexBase() : SparseIndex(SparseIndexType::format_id) {}
};
} // namespace internal
// ----------------------------------------------------------------------
// SparseCOOIndex class
/// \brief EXPERIMENTAL: The index data for a COO sparse tensor
///
/// A COO sparse index manages the location of its non-zero values by their
/// coordinates.
class ARROW_EXPORT SparseCOOIndex : public internal::SparseIndexBase<SparseCOOIndex> {
public:
static constexpr SparseTensorFormat::type format_id = SparseTensorFormat::COO;
/// \brief Make SparseCOOIndex from a coords tensor and canonicality
static Result<std::shared_ptr<SparseCOOIndex>> Make(
const std::shared_ptr<Tensor>& coords, bool is_canonical);
/// \brief Make SparseCOOIndex from a coords tensor with canonicality auto-detection
static Result<std::shared_ptr<SparseCOOIndex>> Make(
const std::shared_ptr<Tensor>& coords);
/// \brief Make SparseCOOIndex from raw properties with canonicality auto-detection
static Result<std::shared_ptr<SparseCOOIndex>> Make(
const std::shared_ptr<DataType>& indices_type,
const std::vector<int64_t>& indices_shape,
const std::vector<int64_t>& indices_strides, std::shared_ptr<Buffer> indices_data);
/// \brief Make SparseCOOIndex from raw properties
static Result<std::shared_ptr<SparseCOOIndex>> Make(
const std::shared_ptr<DataType>& indices_type,
const std::vector<int64_t>& indices_shape,
const std::vector<int64_t>& indices_strides, std::shared_ptr<Buffer> indices_data,
bool is_canonical);
/// \brief Make SparseCOOIndex from sparse tensor's shape properties and data
/// with canonicality auto-detection
///
/// The indices_data should be in row-major (C-like) order. If not,
/// use the raw properties constructor.
static Result<std::shared_ptr<SparseCOOIndex>> Make(
const std::shared_ptr<DataType>& indices_type, const std::vector<int64_t>& shape,
int64_t non_zero_length, std::shared_ptr<Buffer> indices_data);
/// \brief Make SparseCOOIndex from sparse tensor's shape properties and data
///
/// The indices_data should be in row-major (C-like) order. If not,
/// use the raw properties constructor.
static Result<std::shared_ptr<SparseCOOIndex>> Make(
const std::shared_ptr<DataType>& indices_type, const std::vector<int64_t>& shape,
int64_t non_zero_length, std::shared_ptr<Buffer> indices_data, bool is_canonical);
/// \brief Construct SparseCOOIndex from column-major NumericTensor
explicit SparseCOOIndex(const std::shared_ptr<Tensor>& coords, bool is_canonical);
/// \brief Return a tensor that has the coordinates of the non-zero values
///
/// The returned tensor is a N x D tensor where N is the number of non-zero
/// values and D is the number of dimensions in the logical data.
/// The column at index `i` is a D-tuple of coordinates indicating that the
/// logical value at those coordinates should be found at physical index `i`.
const std::shared_ptr<Tensor>& indices() const { return coords_; }
/// \brief Return the number of non zero values in the sparse tensor related
/// to this sparse index
int64_t non_zero_length() const override { return coords_->shape()[0]; }
/// \brief Return whether a sparse tensor index is canonical, or not.
/// If a sparse tensor index is canonical, it is sorted in the lexicographical order,
/// and the corresponding sparse tensor doesn't have duplicated entries.
bool is_canonical() const { return is_canonical_; }
/// \brief Return a string representation of the sparse index
std::string ToString() const override;
/// \brief Return whether the COO indices are equal
bool Equals(const SparseCOOIndex& other) const {
return indices()->Equals(*other.indices());
}
inline Status ValidateShape(const std::vector<int64_t>& shape) const override {
ARROW_RETURN_NOT_OK(SparseIndex::ValidateShape(shape));
if (static_cast<size_t>(coords_->shape()[1]) == shape.size()) {
return Status::OK();
}
return Status::Invalid(
"shape length is inconsistent with the coords matrix in COO index");
}
protected:
std::shared_ptr<Tensor> coords_;
bool is_canonical_;
};
namespace internal {
/// EXPERIMENTAL: The axis to be compressed
enum class SparseMatrixCompressedAxis : char {
/// The value for CSR matrix
ROW,
/// The value for CSC matrix
COLUMN
};
ARROW_EXPORT
Status ValidateSparseCSXIndex(const std::shared_ptr<DataType>& indptr_type,
const std::shared_ptr<DataType>& indices_type,
const std::vector<int64_t>& indptr_shape,
const std::vector<int64_t>& indices_shape,
char const* type_name);
ARROW_EXPORT
void CheckSparseCSXIndexValidity(const std::shared_ptr<DataType>& indptr_type,
const std::shared_ptr<DataType>& indices_type,
const std::vector<int64_t>& indptr_shape,
const std::vector<int64_t>& indices_shape,
char const* type_name);
template <typename SparseIndexType, SparseMatrixCompressedAxis COMPRESSED_AXIS>
class SparseCSXIndex : public SparseIndexBase<SparseIndexType> {
public:
static constexpr SparseMatrixCompressedAxis kCompressedAxis = COMPRESSED_AXIS;
/// \brief Make a subclass of SparseCSXIndex from raw properties
static Result<std::shared_ptr<SparseIndexType>> Make(
const std::shared_ptr<DataType>& indptr_type,
const std::shared_ptr<DataType>& indices_type,
const std::vector<int64_t>& indptr_shape, const std::vector<int64_t>& indices_shape,
std::shared_ptr<Buffer> indptr_data, std::shared_ptr<Buffer> indices_data) {
ARROW_RETURN_NOT_OK(ValidateSparseCSXIndex(indptr_type, indices_type, indptr_shape,
indices_shape,
SparseIndexType::kTypeName));
return std::make_shared<SparseIndexType>(
std::make_shared<Tensor>(indptr_type, indptr_data, indptr_shape),
std::make_shared<Tensor>(indices_type, indices_data, indices_shape));
}
/// \brief Make a subclass of SparseCSXIndex from raw properties
static Result<std::shared_ptr<SparseIndexType>> Make(
const std::shared_ptr<DataType>& indices_type,
const std::vector<int64_t>& indptr_shape, const std::vector<int64_t>& indices_shape,
std::shared_ptr<Buffer> indptr_data, std::shared_ptr<Buffer> indices_data) {
return Make(indices_type, indices_type, indptr_shape, indices_shape, indptr_data,
indices_data);
}
/// \brief Make a subclass of SparseCSXIndex from sparse tensor's shape properties and
/// data
static Result<std::shared_ptr<SparseIndexType>> Make(
const std::shared_ptr<DataType>& indptr_type,
const std::shared_ptr<DataType>& indices_type, const std::vector<int64_t>& shape,
int64_t non_zero_length, std::shared_ptr<Buffer> indptr_data,
std::shared_ptr<Buffer> indices_data) {
std::vector<int64_t> indptr_shape({shape[0] + 1});
std::vector<int64_t> indices_shape({non_zero_length});
return Make(indptr_type, indices_type, indptr_shape, indices_shape, indptr_data,
indices_data);
}
/// \brief Make a subclass of SparseCSXIndex from sparse tensor's shape properties and
/// data
static Result<std::shared_ptr<SparseIndexType>> Make(
const std::shared_ptr<DataType>& indices_type, const std::vector<int64_t>& shape,
int64_t non_zero_length, std::shared_ptr<Buffer> indptr_data,
std::shared_ptr<Buffer> indices_data) {
return Make(indices_type, indices_type, shape, non_zero_length, indptr_data,
indices_data);
}
/// \brief Construct SparseCSXIndex from two index vectors
explicit SparseCSXIndex(const std::shared_ptr<Tensor>& indptr,
const std::shared_ptr<Tensor>& indices)
: SparseIndexBase<SparseIndexType>(), indptr_(indptr), indices_(indices) {
CheckSparseCSXIndexValidity(indptr_->type(), indices_->type(), indptr_->shape(),
indices_->shape(), SparseIndexType::kTypeName);
}
/// \brief Return a 1D tensor of indptr vector
const std::shared_ptr<Tensor>& indptr() const { return indptr_; }
/// \brief Return a 1D tensor of indices vector
const std::shared_ptr<Tensor>& indices() const { return indices_; }
/// \brief Return the number of non zero values in the sparse tensor related
/// to this sparse index
int64_t non_zero_length() const override { return indices_->shape()[0]; }
/// \brief Return a string representation of the sparse index
std::string ToString() const override {
return std::string(SparseIndexType::kTypeName);
}
/// \brief Return whether the CSR indices are equal
bool Equals(const SparseIndexType& other) const {
return indptr()->Equals(*other.indptr()) && indices()->Equals(*other.indices());
}
inline Status ValidateShape(const std::vector<int64_t>& shape) const override {
ARROW_RETURN_NOT_OK(SparseIndex::ValidateShape(shape));
if (shape.size() < 2) {
return Status::Invalid("shape length is too short");
}
if (shape.size() > 2) {
return Status::Invalid("shape length is too long");
}
if (indptr_->shape()[0] == shape[static_cast<int64_t>(kCompressedAxis)] + 1) {
return Status::OK();
}
return Status::Invalid("shape length is inconsistent with the ", ToString());
}
protected:
std::shared_ptr<Tensor> indptr_;
std::shared_ptr<Tensor> indices_;
};
} // namespace internal
// ----------------------------------------------------------------------
// SparseCSRIndex class
/// \brief EXPERIMENTAL: The index data for a CSR sparse matrix
///
/// A CSR sparse index manages the location of its non-zero values by two
/// vectors.
///
/// The first vector, called indptr, represents the range of the rows; the i-th
/// row spans from indptr[i] to indptr[i+1] in the corresponding value vector.
/// So the length of an indptr vector is the number of rows + 1.
///
/// The other vector, called indices, represents the column indices of the
/// corresponding non-zero values. So the length of an indices vector is same
/// as the number of non-zero-values.
class ARROW_EXPORT SparseCSRIndex
: public internal::SparseCSXIndex<SparseCSRIndex,
internal::SparseMatrixCompressedAxis::ROW> {
public:
using BaseClass =
internal::SparseCSXIndex<SparseCSRIndex, internal::SparseMatrixCompressedAxis::ROW>;
Loading ...