// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <cassert>
#include <cstdint>
#include <cstring>
#include "arrow/buffer.h"
#include "arrow/util/bit_util.h"
#include "arrow/util/endian.h"
#include "arrow/util/macros.h"
namespace arrow {
namespace internal {
class BitmapReader {
public:
BitmapReader(const uint8_t* bitmap, int64_t start_offset, int64_t length)
: bitmap_(bitmap), position_(0), length_(length) {
current_byte_ = 0;
byte_offset_ = start_offset / 8;
bit_offset_ = start_offset % 8;
if (length > 0) {
current_byte_ = bitmap[byte_offset_];
}
}
bool IsSet() const { return (current_byte_ & (1 << bit_offset_)) != 0; }
bool IsNotSet() const { return (current_byte_ & (1 << bit_offset_)) == 0; }
void Next() {
++bit_offset_;
++position_;
if (ARROW_PREDICT_FALSE(bit_offset_ == 8)) {
bit_offset_ = 0;
++byte_offset_;
if (ARROW_PREDICT_TRUE(position_ < length_)) {
current_byte_ = bitmap_[byte_offset_];
}
}
}
int64_t position() const { return position_; }
int64_t length() const { return length_; }
private:
const uint8_t* bitmap_;
int64_t position_;
int64_t length_;
uint8_t current_byte_;
int64_t byte_offset_;
int64_t bit_offset_;
};
// XXX Cannot name it BitmapWordReader because the name is already used
// in bitmap_ops.cc
class BitmapUInt64Reader {
public:
BitmapUInt64Reader(const uint8_t* bitmap, int64_t start_offset, int64_t length)
: bitmap_(util::MakeNonNull(bitmap) + start_offset / 8),
num_carry_bits_(8 - start_offset % 8),
length_(length),
remaining_length_(length_),
carry_bits_(0) {
if (length_ > 0) {
// Load carry bits from the first byte's MSBs
if (length_ >= num_carry_bits_) {
carry_bits_ =
LoadPartialWord(static_cast<int8_t>(8 - num_carry_bits_), num_carry_bits_);
} else {
carry_bits_ = LoadPartialWord(static_cast<int8_t>(8 - num_carry_bits_), length_);
}
}
}
uint64_t NextWord() {
if (ARROW_PREDICT_TRUE(remaining_length_ >= 64 + num_carry_bits_)) {
// We can load a full word
uint64_t next_word = LoadFullWord();
// Carry bits come first, then the (64 - num_carry_bits_) LSBs from next_word
uint64_t word = carry_bits_ | (next_word << num_carry_bits_);
carry_bits_ = next_word >> (64 - num_carry_bits_);
remaining_length_ -= 64;
return word;
} else if (remaining_length_ > num_carry_bits_) {
// We can load a partial word
uint64_t next_word =
LoadPartialWord(/*bit_offset=*/0, remaining_length_ - num_carry_bits_);
uint64_t word = carry_bits_ | (next_word << num_carry_bits_);
carry_bits_ = next_word >> (64 - num_carry_bits_);
remaining_length_ = std::max<int64_t>(remaining_length_ - 64, 0);
return word;
} else {
remaining_length_ = 0;
return carry_bits_;
}
}
int64_t position() const { return length_ - remaining_length_; }
int64_t length() const { return length_; }
private:
uint64_t LoadFullWord() {
uint64_t word;
memcpy(&word, bitmap_, 8);
bitmap_ += 8;
return bit_util::ToLittleEndian(word);
}
uint64_t LoadPartialWord(int8_t bit_offset, int64_t num_bits) {
uint64_t word = 0;
const int64_t num_bytes = bit_util::BytesForBits(num_bits);
memcpy(&word, bitmap_, num_bytes);
bitmap_ += num_bytes;
return (bit_util::ToLittleEndian(word) >> bit_offset) &
bit_util::LeastSignificantBitMask(num_bits);
}
const uint8_t* bitmap_;
const int64_t num_carry_bits_; // in [1, 8]
const int64_t length_;
int64_t remaining_length_;
uint64_t carry_bits_;
};
// BitmapWordReader here is faster than BitmapUInt64Reader (in bitmap_reader.h)
// on sufficiently large inputs. However, it has a larger prolog / epilog overhead
// and should probably not be used for small bitmaps.
template <typename Word, bool may_have_byte_offset = true>
class BitmapWordReader {
public:
BitmapWordReader() = default;
BitmapWordReader(const uint8_t* bitmap, int64_t offset, int64_t length)
: offset_(static_cast<int64_t>(may_have_byte_offset) * (offset % 8)),
bitmap_(bitmap + offset / 8),
bitmap_end_(bitmap_ + bit_util::BytesForBits(offset_ + length)) {
// decrement word count by one as we may touch two adjacent words in one iteration
nwords_ = length / (sizeof(Word) * 8) - 1;
if (nwords_ < 0) {
nwords_ = 0;
}
trailing_bits_ = static_cast<int>(length - nwords_ * sizeof(Word) * 8);
trailing_bytes_ = static_cast<int>(bit_util::BytesForBits(trailing_bits_));
if (nwords_ > 0) {
current_data.word_ = load<Word>(bitmap_);
} else if (length > 0) {
current_data.epi.byte_ = load<uint8_t>(bitmap_);
}
}
Word NextWord() {
bitmap_ += sizeof(Word);
const Word next_word = load<Word>(bitmap_);
Word word = current_data.word_;
if (may_have_byte_offset && offset_) {
// combine two adjacent words into one word
// |<------ next ----->|<---- current ---->|
// +-------------+-----+-------------+-----+
// | --- | A | B | --- |
// +-------------+-----+-------------+-----+
// | | offset
// v v
// +-----+-------------+
// | A | B |
// +-----+-------------+
// |<------ word ----->|
word >>= offset_;
word |= next_word << (sizeof(Word) * 8 - offset_);
}
current_data.word_ = next_word;
return word;
}
uint8_t NextTrailingByte(int& valid_bits) {
uint8_t byte;
assert(trailing_bits_ > 0);
if (trailing_bits_ <= 8) {
// last byte
valid_bits = trailing_bits_;
trailing_bits_ = 0;
byte = 0;
internal::BitmapReader reader(bitmap_, offset_, valid_bits);
for (int i = 0; i < valid_bits; ++i) {
byte >>= 1;
if (reader.IsSet()) {
byte |= 0x80;
}
reader.Next();
}
byte >>= (8 - valid_bits);
} else {
++bitmap_;
const uint8_t next_byte = load<uint8_t>(bitmap_);
byte = current_data.epi.byte_;
if (may_have_byte_offset && offset_) {
byte >>= offset_;
byte |= next_byte << (8 - offset_);
}
current_data.epi.byte_ = next_byte;
trailing_bits_ -= 8;
trailing_bytes_--;
valid_bits = 8;
}
return byte;
}
int64_t words() const { return nwords_; }
int trailing_bytes() const { return trailing_bytes_; }
private:
int64_t offset_;
const uint8_t* bitmap_;
const uint8_t* bitmap_end_;
int64_t nwords_;
int trailing_bits_;
int trailing_bytes_;
union {
Word word_;
struct {
#if ARROW_LITTLE_ENDIAN == 0
uint8_t padding_bytes_[sizeof(Word) - 1];
#endif
uint8_t byte_;
} epi;
} current_data;
template <typename DType>
DType load(const uint8_t* bitmap) {
assert(bitmap + sizeof(DType) <= bitmap_end_);
return bit_util::ToLittleEndian(util::SafeLoadAs<DType>(bitmap));
}
};
/// \brief Index into a possibly nonexistent bitmap
struct OptionalBitIndexer {
const uint8_t* bitmap;
const int64_t offset;
explicit OptionalBitIndexer(const uint8_t* buffer = NULLPTR, int64_t offset = 0)
: bitmap(buffer), offset(offset) {}
bool operator[](int64_t i) const {
return bitmap == NULLPTR || bit_util::GetBit(bitmap, offset + i);
}
};
} // namespace internal
} // namespace arrow