// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#ifdef _WIN32
# define ARROW_LITTLE_ENDIAN 1
#else
# if defined(__APPLE__) || defined(__FreeBSD__)
# include <machine/endian.h> // IWYU pragma: keep
# elif defined(sun) || defined(__sun)
# include <sys/byteorder.h> // IWYU pragma: keep
# else
# include <endian.h> // IWYU pragma: keep
# endif
#
# ifndef __BYTE_ORDER__
# error "__BYTE_ORDER__ not defined"
# endif
#
# ifndef __ORDER_LITTLE_ENDIAN__
# error "__ORDER_LITTLE_ENDIAN__ not defined"
# endif
#
# if __BYTE_ORDER__ == __ORDER_LITTLE_ENDIAN__
# define ARROW_LITTLE_ENDIAN 1
# else
# define ARROW_LITTLE_ENDIAN 0
# endif
#endif
#if defined(_MSC_VER)
# include <intrin.h> // IWYU pragma: keep
# define ARROW_BYTE_SWAP64 _byteswap_uint64
# define ARROW_BYTE_SWAP32 _byteswap_ulong
#else
# define ARROW_BYTE_SWAP64 __builtin_bswap64
# define ARROW_BYTE_SWAP32 __builtin_bswap32
#endif
#include <algorithm>
#include <array>
#include "arrow/util/type_traits.h"
#include "arrow/util/ubsan.h"
namespace arrow {
namespace bit_util {
//
// Byte-swap 16-bit, 32-bit and 64-bit values
//
// Swap the byte order (i.e. endianness)
static inline int64_t ByteSwap(int64_t value) { return ARROW_BYTE_SWAP64(value); }
static inline uint64_t ByteSwap(uint64_t value) {
return static_cast<uint64_t>(ARROW_BYTE_SWAP64(value));
}
static inline int32_t ByteSwap(int32_t value) { return ARROW_BYTE_SWAP32(value); }
static inline uint32_t ByteSwap(uint32_t value) {
return static_cast<uint32_t>(ARROW_BYTE_SWAP32(value));
}
static inline int16_t ByteSwap(int16_t value) {
constexpr auto m = static_cast<int16_t>(0xff);
return static_cast<int16_t>(((value >> 8) & m) | ((value & m) << 8));
}
static inline uint16_t ByteSwap(uint16_t value) {
return static_cast<uint16_t>(ByteSwap(static_cast<int16_t>(value)));
}
static inline uint8_t ByteSwap(uint8_t value) { return value; }
static inline int8_t ByteSwap(int8_t value) { return value; }
static inline double ByteSwap(double value) {
const uint64_t swapped = ARROW_BYTE_SWAP64(util::SafeCopy<uint64_t>(value));
return util::SafeCopy<double>(swapped);
}
static inline float ByteSwap(float value) {
const uint32_t swapped = ARROW_BYTE_SWAP32(util::SafeCopy<uint32_t>(value));
return util::SafeCopy<float>(swapped);
}
// Write the swapped bytes into dst. Src and dst cannot overlap.
static inline void ByteSwap(void* dst, const void* src, int len) {
switch (len) {
case 1:
*reinterpret_cast<int8_t*>(dst) = *reinterpret_cast<const int8_t*>(src);
return;
case 2:
*reinterpret_cast<int16_t*>(dst) = ByteSwap(*reinterpret_cast<const int16_t*>(src));
return;
case 4:
*reinterpret_cast<int32_t*>(dst) = ByteSwap(*reinterpret_cast<const int32_t*>(src));
return;
case 8:
*reinterpret_cast<int64_t*>(dst) = ByteSwap(*reinterpret_cast<const int64_t*>(src));
return;
default:
break;
}
auto d = reinterpret_cast<uint8_t*>(dst);
auto s = reinterpret_cast<const uint8_t*>(src);
for (int i = 0; i < len; ++i) {
d[i] = s[len - i - 1];
}
}
// Convert to little/big endian format from the machine's native endian format.
#if ARROW_LITTLE_ENDIAN
template <typename T, typename = internal::EnableIfIsOneOf<
T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t,
uint8_t, int8_t, float, double, bool>>
static inline T ToBigEndian(T value) {
return ByteSwap(value);
}
template <typename T, typename = internal::EnableIfIsOneOf<
T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t,
uint8_t, int8_t, float, double, bool>>
static inline T ToLittleEndian(T value) {
return value;
}
#else
template <typename T, typename = internal::EnableIfIsOneOf<
T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t,
uint8_t, int8_t, float, double, bool>>
static inline T ToBigEndian(T value) {
return value;
}
template <typename T, typename = internal::EnableIfIsOneOf<
T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t,
uint8_t, int8_t, float, double, bool>>
static inline T ToLittleEndian(T value) {
return ByteSwap(value);
}
#endif
// Convert from big/little endian format to the machine's native endian format.
#if ARROW_LITTLE_ENDIAN
template <typename T, typename = internal::EnableIfIsOneOf<
T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t,
uint8_t, int8_t, float, double, bool>>
static inline T FromBigEndian(T value) {
return ByteSwap(value);
}
template <typename T, typename = internal::EnableIfIsOneOf<
T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t,
uint8_t, int8_t, float, double, bool>>
static inline T FromLittleEndian(T value) {
return value;
}
#else
template <typename T, typename = internal::EnableIfIsOneOf<
T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t,
uint8_t, int8_t, float, double, bool>>
static inline T FromBigEndian(T value) {
return value;
}
template <typename T, typename = internal::EnableIfIsOneOf<
T, int64_t, uint64_t, int32_t, uint32_t, int16_t, uint16_t,
uint8_t, int8_t, float, double, bool>>
static inline T FromLittleEndian(T value) {
return ByteSwap(value);
}
#endif
// Handle endianness in *word* granularity (keep individual array element untouched)
namespace little_endian {
namespace detail {
// Read a native endian array as little endian
template <typename T, size_t N>
struct Reader {
const std::array<T, N>& native_array;
explicit Reader(const std::array<T, N>& native_array) : native_array(native_array) {}
const T& operator[](size_t i) const {
return native_array[ARROW_LITTLE_ENDIAN ? i : N - 1 - i];
}
};
// Read/write a native endian array as little endian
template <typename T, size_t N>
struct Writer {
std::array<T, N>* native_array;
explicit Writer(std::array<T, N>* native_array) : native_array(native_array) {}
const T& operator[](size_t i) const {
return (*native_array)[ARROW_LITTLE_ENDIAN ? i : N - 1 - i];
}
T& operator[](size_t i) { return (*native_array)[ARROW_LITTLE_ENDIAN ? i : N - 1 - i]; }
};
} // namespace detail
// Construct array reader and try to deduce template augments
template <typename T, size_t N>
static inline detail::Reader<T, N> Make(const std::array<T, N>& native_array) {
return detail::Reader<T, N>(native_array);
}
// Construct array writer and try to deduce template augments
template <typename T, size_t N>
static inline detail::Writer<T, N> Make(std::array<T, N>* native_array) {
return detail::Writer<T, N>(native_array);
}
// Convert little endian array to native endian
template <typename T, size_t N>
static inline std::array<T, N> ToNative(std::array<T, N> array) {
if (!ARROW_LITTLE_ENDIAN) {
std::reverse(array.begin(), array.end());
}
return array;
}
// Convert native endian array to little endian
template <typename T, size_t N>
static inline std::array<T, N> FromNative(std::array<T, N> array) {
return ToNative(array);
}
} // namespace little_endian
} // namespace bit_util
} // namespace arrow