// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <cstdint>
#include <cstring>
#include <memory>
#include "arrow/type_fwd.h"
#include "arrow/util/compression.h"
#include "parquet/exception.h"
#include "parquet/platform.h"
#include "parquet/types.h"
namespace arrow {
class Array;
namespace bit_util {
class BitWriter;
} // namespace bit_util
namespace util {
class RleEncoder;
class CodecOptions;
} // namespace util
} // namespace arrow
namespace parquet {
struct ArrowWriteContext;
class ColumnChunkMetaDataBuilder;
class ColumnDescriptor;
class ColumnIndexBuilder;
class DataPage;
class DictionaryPage;
class Encryptor;
class OffsetIndexBuilder;
class WriterProperties;
class PARQUET_EXPORT LevelEncoder {
public:
LevelEncoder();
~LevelEncoder();
static int MaxBufferSize(Encoding::type encoding, int16_t max_level,
int num_buffered_values);
// Initialize the LevelEncoder.
void Init(Encoding::type encoding, int16_t max_level, int num_buffered_values,
uint8_t* data, int data_size);
// Encodes a batch of levels from an array and returns the number of levels encoded
int Encode(int batch_size, const int16_t* levels);
int32_t len() {
if (encoding_ != Encoding::RLE) {
throw ParquetException("Only implemented for RLE encoding");
}
return rle_length_;
}
private:
int bit_width_;
int rle_length_;
Encoding::type encoding_;
std::unique_ptr<::arrow::util::RleEncoder> rle_encoder_;
std::unique_ptr<::arrow::bit_util::BitWriter> bit_packed_encoder_;
};
class PARQUET_EXPORT PageWriter {
public:
virtual ~PageWriter() {}
static std::unique_ptr<PageWriter> Open(
std::shared_ptr<ArrowOutputStream> sink, Compression::type codec,
ColumnChunkMetaDataBuilder* metadata, int16_t row_group_ordinal = -1,
int16_t column_chunk_ordinal = -1,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool(),
bool buffered_row_group = false,
std::shared_ptr<Encryptor> header_encryptor = NULLPTR,
std::shared_ptr<Encryptor> data_encryptor = NULLPTR,
bool page_write_checksum_enabled = false,
// column_index_builder MUST outlive the PageWriter
ColumnIndexBuilder* column_index_builder = NULLPTR,
// offset_index_builder MUST outlive the PageWriter
OffsetIndexBuilder* offset_index_builder = NULLPTR,
const CodecOptions& codec_options = CodecOptions{});
// The Column Writer decides if dictionary encoding is used if set and
// if the dictionary encoding has fallen back to default encoding on reaching dictionary
// page limit
virtual void Close(bool has_dictionary, bool fallback) = 0;
// Return the number of uncompressed bytes written (including header size)
virtual int64_t WriteDataPage(const DataPage& page) = 0;
// Return the number of uncompressed bytes written (including header size)
virtual int64_t WriteDictionaryPage(const DictionaryPage& page) = 0;
/// \brief The total number of bytes written as serialized data and
/// dictionary pages to the sink so far.
virtual int64_t total_compressed_bytes_written() const = 0;
virtual bool has_compressor() = 0;
virtual void Compress(const Buffer& src_buffer, ResizableBuffer* dest_buffer) = 0;
};
class PARQUET_EXPORT ColumnWriter {
public:
virtual ~ColumnWriter() = default;
static std::shared_ptr<ColumnWriter> Make(ColumnChunkMetaDataBuilder*,
std::unique_ptr<PageWriter>,
const WriterProperties* properties);
/// \brief Closes the ColumnWriter, commits any buffered values to pages.
/// \return Total size of the column in bytes
virtual int64_t Close() = 0;
/// \brief The physical Parquet type of the column
virtual Type::type type() const = 0;
/// \brief The schema for the column
virtual const ColumnDescriptor* descr() const = 0;
/// \brief The number of rows written so far
virtual int64_t rows_written() const = 0;
/// \brief The total size of the compressed pages + page headers. Values
/// are still buffered and not written to a pager yet
///
/// So in un-buffered mode, it always returns 0
virtual int64_t total_compressed_bytes() const = 0;
/// \brief The total number of bytes written as serialized data and
/// dictionary pages to the ColumnChunk so far
/// These bytes are uncompressed bytes.
virtual int64_t total_bytes_written() const = 0;
/// \brief The total number of bytes written as serialized data and
/// dictionary pages to the ColumnChunk so far.
/// If the column is uncompressed, the value would be equal to
/// total_bytes_written().
virtual int64_t total_compressed_bytes_written() const = 0;
/// \brief Estimated size of the values that are not written to a page yet.
virtual int64_t estimated_buffered_value_bytes() const = 0;
/// \brief The file-level writer properties
virtual const WriterProperties* properties() = 0;
/// \brief Add key-value metadata to the ColumnChunk.
/// \param[in] key_value_metadata the metadata to add.
/// \note This will overwrite any existing metadata with the same key.
/// \throw ParquetException if Close() has been called.
virtual void AddKeyValueMetadata(
const std::shared_ptr<const ::arrow::KeyValueMetadata>& key_value_metadata) = 0;
/// \brief Reset the ColumnChunk key-value metadata.
/// \throw ParquetException if Close() has been called.
virtual void ResetKeyValueMetadata() = 0;
/// \brief Write Apache Arrow columnar data directly to ColumnWriter. Returns
/// error status if the array data type is not compatible with the concrete
/// writer type.
///
/// leaf_array is always a primitive (possibly dictionary encoded type).
/// Leaf_field_nullable indicates whether the leaf array is considered nullable
/// according to its schema in a Table or its parent array.
virtual ::arrow::Status WriteArrow(const int16_t* def_levels, const int16_t* rep_levels,
int64_t num_levels, const ::arrow::Array& leaf_array,
ArrowWriteContext* ctx,
bool leaf_field_nullable) = 0;
};
// API to write values to a single column. This is the main client facing API.
template <typename DType>
class TypedColumnWriter : public ColumnWriter {
public:
using T = typename DType::c_type;
// Write a batch of repetition levels, definition levels, and values to the
// column.
// `num_values` is the number of logical leaf values.
// `def_levels` (resp. `rep_levels`) can be null if the column's max definition level
// (resp. max repetition level) is 0.
// If not null, each of `def_levels` and `rep_levels` must have at least
// `num_values`.
//
// The number of physical values written (taken from `values`) is returned.
// It can be smaller than `num_values` is there are some undefined values.
virtual int64_t WriteBatch(int64_t num_values, const int16_t* def_levels,
const int16_t* rep_levels, const T* values) = 0;
/// Write a batch of repetition levels, definition levels, and values to the
/// column.
///
/// In comparison to WriteBatch the length of repetition and definition levels
/// is the same as of the number of values read for max_definition_level == 1.
/// In the case of max_definition_level > 1, the repetition and definition
/// levels are larger than the values but the values include the null entries
/// with definition_level == (max_definition_level - 1). Thus we have to differentiate
/// in the parameters of this function if the input has the length of num_values or the
/// _number of rows in the lowest nesting level_.
///
/// In the case that the most inner node in the Parquet is required, the _number of rows
/// in the lowest nesting level_ is equal to the number of non-null values. If the
/// inner-most schema node is optional, the _number of rows in the lowest nesting level_
/// also includes all values with definition_level == (max_definition_level - 1).
///
/// @param num_values number of levels to write.
/// @param def_levels The Parquet definition levels, length is num_values
/// @param rep_levels The Parquet repetition levels, length is num_values
/// @param valid_bits Bitmap that indicates if the row is null on the lowest nesting
/// level. The length is number of rows in the lowest nesting level.
/// @param valid_bits_offset The offset in bits of the valid_bits where the
/// first relevant bit resides.
/// @param values The values in the lowest nested level including
/// spacing for nulls on the lowest levels; input has the length
/// of the number of rows on the lowest nesting level.
virtual void WriteBatchSpaced(int64_t num_values, const int16_t* def_levels,
const int16_t* rep_levels, const uint8_t* valid_bits,
int64_t valid_bits_offset, const T* values) = 0;
};
using BoolWriter = TypedColumnWriter<BooleanType>;
using Int32Writer = TypedColumnWriter<Int32Type>;
using Int64Writer = TypedColumnWriter<Int64Type>;
using Int96Writer = TypedColumnWriter<Int96Type>;
using FloatWriter = TypedColumnWriter<FloatType>;
using DoubleWriter = TypedColumnWriter<DoubleType>;
using ByteArrayWriter = TypedColumnWriter<ByteArrayType>;
using FixedLenByteArrayWriter = TypedColumnWriter<FLBAType>;
namespace internal {
/**
* Timestamp conversion constants
*/
constexpr int64_t kJulianEpochOffsetDays = INT64_C(2440588);
template <int64_t UnitPerDay, int64_t NanosecondsPerUnit>
inline void ArrowTimestampToImpalaTimestamp(const int64_t time, Int96* impala_timestamp) {
int64_t julian_days = (time / UnitPerDay) + kJulianEpochOffsetDays;
(*impala_timestamp).value[2] = (uint32_t)julian_days;
int64_t last_day_units = time % UnitPerDay;
auto last_day_nanos = last_day_units * NanosecondsPerUnit;
// impala_timestamp will be unaligned every other entry so do memcpy instead
// of assign and reinterpret cast to avoid undefined behavior.
std::memcpy(impala_timestamp, &last_day_nanos, sizeof(int64_t));
}
constexpr int64_t kSecondsInNanos = INT64_C(1000000000);
inline void SecondsToImpalaTimestamp(const int64_t seconds, Int96* impala_timestamp) {
ArrowTimestampToImpalaTimestamp<kSecondsPerDay, kSecondsInNanos>(seconds,
impala_timestamp);
}
constexpr int64_t kMillisecondsInNanos = kSecondsInNanos / INT64_C(1000);
inline void MillisecondsToImpalaTimestamp(const int64_t milliseconds,
Int96* impala_timestamp) {
ArrowTimestampToImpalaTimestamp<kMillisecondsPerDay, kMillisecondsInNanos>(
milliseconds, impala_timestamp);
}
constexpr int64_t kMicrosecondsInNanos = kMillisecondsInNanos / INT64_C(1000);
inline void MicrosecondsToImpalaTimestamp(const int64_t microseconds,
Int96* impala_timestamp) {
ArrowTimestampToImpalaTimestamp<kMicrosecondsPerDay, kMicrosecondsInNanos>(
microseconds, impala_timestamp);
}
constexpr int64_t kNanosecondsInNanos = INT64_C(1);
inline void NanosecondsToImpalaTimestamp(const int64_t nanoseconds,
Int96* impala_timestamp) {
ArrowTimestampToImpalaTimestamp<kNanosecondsPerDay, kNanosecondsInNanos>(
nanoseconds, impala_timestamp);
}
} // namespace internal
} // namespace parquet