// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements. See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership. The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License. You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied. See the License for the
// specific language governing permissions and limitations
// under the License.
#pragma once
#include <algorithm>
#include <cstddef>
#include <cstdint>
#include <memory>
#include <string>
#include <utility>
#include "parquet/platform.h"
#include "parquet/types.h"
namespace arrow {
class Array;
class BinaryArray;
} // namespace arrow
namespace parquet {
class ColumnDescriptor;
// ----------------------------------------------------------------------
// Value comparator interfaces
/// \brief Base class for value comparators. Generally used with
/// TypedComparator<T>
class PARQUET_EXPORT Comparator {
public:
virtual ~Comparator() {}
/// \brief Create a comparator explicitly from physical type and
/// sort order
/// \param[in] physical_type the physical type for the typed
/// comparator
/// \param[in] sort_order either SortOrder::SIGNED or
/// SortOrder::UNSIGNED
/// \param[in] type_length for FIXED_LEN_BYTE_ARRAY only
static std::shared_ptr<Comparator> Make(Type::type physical_type,
SortOrder::type sort_order,
int type_length = -1);
/// \brief Create typed comparator inferring default sort order from
/// ColumnDescriptor
/// \param[in] descr the Parquet column schema
static std::shared_ptr<Comparator> Make(const ColumnDescriptor* descr);
};
/// \brief Interface for comparison of physical types according to the
/// semantics of a particular logical type.
template <typename DType>
class TypedComparator : public Comparator {
public:
using T = typename DType::c_type;
/// \brief Scalar comparison of two elements, return true if first
/// is strictly less than the second
virtual bool Compare(const T& a, const T& b) const = 0;
/// \brief Compute maximum and minimum elements in a batch of
/// elements without any nulls
virtual std::pair<T, T> GetMinMax(const T* values, int64_t length) const = 0;
/// \brief Compute minimum and maximum elements from an Arrow array. Only
/// valid for certain Parquet Type / Arrow Type combinations, like BYTE_ARRAY
/// / arrow::BinaryArray
virtual std::pair<T, T> GetMinMax(const ::arrow::Array& values) const = 0;
/// \brief Compute maximum and minimum elements in a batch of
/// elements with accompanying bitmap indicating which elements are
/// included (bit set) and excluded (bit not set)
///
/// \param[in] values the sequence of values
/// \param[in] length the length of the sequence
/// \param[in] valid_bits a bitmap indicating which elements are
/// included (1) or excluded (0)
/// \param[in] valid_bits_offset the bit offset into the bitmap of
/// the first element in the sequence
virtual std::pair<T, T> GetMinMaxSpaced(const T* values, int64_t length,
const uint8_t* valid_bits,
int64_t valid_bits_offset) const = 0;
};
/// \brief Typed version of Comparator::Make
template <typename DType>
std::shared_ptr<TypedComparator<DType>> MakeComparator(Type::type physical_type,
SortOrder::type sort_order,
int type_length = -1) {
return std::static_pointer_cast<TypedComparator<DType>>(
Comparator::Make(physical_type, sort_order, type_length));
}
/// \brief Typed version of Comparator::Make
template <typename DType>
std::shared_ptr<TypedComparator<DType>> MakeComparator(const ColumnDescriptor* descr) {
return std::static_pointer_cast<TypedComparator<DType>>(Comparator::Make(descr));
}
// ----------------------------------------------------------------------
/// \brief Structure represented encoded statistics to be written to
/// and read from Parquet serialized metadata.
class PARQUET_EXPORT EncodedStatistics {
std::string max_, min_;
bool is_signed_ = false;
public:
EncodedStatistics() = default;
const std::string& max() const { return max_; }
const std::string& min() const { return min_; }
int64_t null_count = 0;
int64_t distinct_count = 0;
bool has_min = false;
bool has_max = false;
bool has_null_count = false;
bool has_distinct_count = false;
// When all values in the statistics are null, it is set to true.
// Otherwise, at least one value is not null, or we are not sure at all.
// Page index requires this information to decide whether a data page
// is a null page or not.
bool all_null_value = false;
// From parquet-mr
// Don't write stats larger than the max size rather than truncating. The
// rationale is that some engines may use the minimum value in the page as
// the true minimum for aggregations and there is no way to mark that a
// value has been truncated and is a lower bound and not in the page.
void ApplyStatSizeLimits(size_t length) {
if (max_.length() > length) {
has_max = false;
max_.clear();
}
if (min_.length() > length) {
has_min = false;
min_.clear();
}
}
bool is_set() const {
return has_min || has_max || has_null_count || has_distinct_count;
}
bool is_signed() const { return is_signed_; }
void set_is_signed(bool is_signed) { is_signed_ = is_signed; }
EncodedStatistics& set_max(std::string value) {
max_ = std::move(value);
has_max = true;
return *this;
}
EncodedStatistics& set_min(std::string value) {
min_ = std::move(value);
has_min = true;
return *this;
}
EncodedStatistics& set_null_count(int64_t value) {
null_count = value;
has_null_count = true;
return *this;
}
EncodedStatistics& set_distinct_count(int64_t value) {
distinct_count = value;
has_distinct_count = true;
return *this;
}
};
/// \brief Base type for computing column statistics while writing a file
class PARQUET_EXPORT Statistics {
public:
virtual ~Statistics() {}
/// \brief Create a new statistics instance given a column schema
/// definition
/// \param[in] descr the column schema
/// \param[in] pool a memory pool to use for any memory allocations, optional
static std::shared_ptr<Statistics> Make(
const ColumnDescriptor* descr,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool());
/// \brief Create a new statistics instance given a column schema
/// definition and preexisting state
/// \param[in] descr the column schema
/// \param[in] encoded_min the encoded minimum value
/// \param[in] encoded_max the encoded maximum value
/// \param[in] num_values total number of values
/// \param[in] null_count number of null values
/// \param[in] distinct_count number of distinct values
/// \param[in] has_min_max whether the min/max statistics are set
/// \param[in] has_null_count whether the null_count statistics are set
/// \param[in] has_distinct_count whether the distinct_count statistics are set
/// \param[in] pool a memory pool to use for any memory allocations, optional
static std::shared_ptr<Statistics> Make(
const ColumnDescriptor* descr, const std::string& encoded_min,
const std::string& encoded_max, int64_t num_values, int64_t null_count,
int64_t distinct_count, bool has_min_max, bool has_null_count,
bool has_distinct_count,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool());
// Helper function to convert EncodedStatistics to Statistics.
// EncodedStatistics does not contain number of non-null values, and it can be
// passed using the num_values parameter.
static std::shared_ptr<Statistics> Make(
const ColumnDescriptor* descr, const EncodedStatistics* encoded_statistics,
int64_t num_values = -1,
::arrow::MemoryPool* pool = ::arrow::default_memory_pool());
/// \brief Return true if the count of null values is set
virtual bool HasNullCount() const = 0;
/// \brief The number of null values, may not be set
virtual int64_t null_count() const = 0;
/// \brief Return true if the count of distinct values is set
virtual bool HasDistinctCount() const = 0;
/// \brief The number of distinct values, may not be set
virtual int64_t distinct_count() const = 0;
/// \brief The number of non-null values in the column
virtual int64_t num_values() const = 0;
/// \brief Return true if both min and max statistics are set. Obtain
/// with TypedStatistics<T>::min and max
virtual bool HasMinMax() const = 0;
/// \brief Reset state of object to initial (no data observed) state
virtual void Reset() = 0;
/// \brief Plain-encoded minimum value
virtual std::string EncodeMin() const = 0;
/// \brief Plain-encoded maximum value
virtual std::string EncodeMax() const = 0;
/// \brief The finalized encoded form of the statistics for transport
virtual EncodedStatistics Encode() = 0;
/// \brief The physical type of the column schema
virtual Type::type physical_type() const = 0;
/// \brief The full type descriptor from the column schema
virtual const ColumnDescriptor* descr() const = 0;
/// \brief Check two Statistics for equality
virtual bool Equals(const Statistics& other) const = 0;
protected:
static std::shared_ptr<Statistics> Make(Type::type physical_type, const void* min,
const void* max, int64_t num_values,
int64_t null_count, int64_t distinct_count);
};
/// \brief A typed implementation of Statistics
template <typename DType>
class TypedStatistics : public Statistics {
public:
using T = typename DType::c_type;
/// \brief The current minimum value
virtual const T& min() const = 0;
/// \brief The current maximum value
virtual const T& max() const = 0;
/// \brief Update state with state of another Statistics object
virtual void Merge(const TypedStatistics<DType>& other) = 0;
/// \brief Batch statistics update
virtual void Update(const T* values, int64_t num_values, int64_t null_count) = 0;
/// \brief Batch statistics update with supplied validity bitmap
/// \param[in] values pointer to column values
/// \param[in] valid_bits Pointer to bitmap representing if values are non-null.
/// \param[in] valid_bits_offset Offset offset into valid_bits where the slice of
/// data begins.
/// \param[in] num_spaced_values The length of values in values/valid_bits to inspect
/// when calculating statistics. This can be smaller than
/// num_values+null_count as null_count can include nulls
/// from parents while num_spaced_values does not.
/// \param[in] num_values Number of values that are not null.
/// \param[in] null_count Number of values that are null.
virtual void UpdateSpaced(const T* values, const uint8_t* valid_bits,
int64_t valid_bits_offset, int64_t num_spaced_values,
int64_t num_values, int64_t null_count) = 0;
/// \brief EXPERIMENTAL: Update statistics with an Arrow array without
/// conversion to a primitive Parquet C type. Only implemented for certain
/// Parquet type / Arrow type combinations like BYTE_ARRAY /
/// arrow::BinaryArray
///
/// If update_counts is true then the null_count and num_values will be updated
/// based on the null_count of values. Set to false if these are updated
/// elsewhere (e.g. when updating a dictionary where the counts are taken from
/// the indices and not the values)
virtual void Update(const ::arrow::Array& values, bool update_counts = true) = 0;
/// \brief Set min and max values to particular values
virtual void SetMinMax(const T& min, const T& max) = 0;
/// \brief Increments the null count directly
/// Use Update to extract the null count from data. Use this if you determine
/// the null count through some other means (e.g. dictionary arrays where the
/// null count is determined from the indices)
virtual void IncrementNullCount(int64_t n) = 0;
/// \brief Increments the number of values directly
/// The same note on IncrementNullCount applies here
virtual void IncrementNumValues(int64_t n) = 0;
};
using BoolStatistics = TypedStatistics<BooleanType>;
using Int32Statistics = TypedStatistics<Int32Type>;
using Int64Statistics = TypedStatistics<Int64Type>;
using FloatStatistics = TypedStatistics<FloatType>;
using DoubleStatistics = TypedStatistics<DoubleType>;
using ByteArrayStatistics = TypedStatistics<ByteArrayType>;
using FLBAStatistics = TypedStatistics<FLBAType>;
Loading ...