Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

arrow-nightlies / pyarrow   python

Repository URL to install this package:

Version: 19.0.0.dev246 

/ src / arrow / python / numpy_convert.cc

// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

#include "arrow/python/numpy_interop.h"

#include "arrow/python/numpy_convert.h"

#include <cstdint>
#include <memory>
#include <string>
#include <vector>

#include "arrow/buffer.h"
#include "arrow/sparse_tensor.h"
#include "arrow/tensor.h"
#include "arrow/type.h"
#include "arrow/util/logging.h"

#include "arrow/python/common.h"
#include "arrow/python/pyarrow.h"
#include "arrow/python/type_traits.h"

namespace arrow {
namespace py {

NumPyBuffer::NumPyBuffer(PyObject* ao) : Buffer(nullptr, 0) {
  PyAcquireGIL lock;
  arr_ = ao;
  Py_INCREF(ao);

  if (PyArray_Check(ao)) {
    PyArrayObject* ndarray = reinterpret_cast<PyArrayObject*>(ao);
    auto ptr = reinterpret_cast<uint8_t*>(PyArray_DATA(ndarray));
    data_ = const_cast<const uint8_t*>(ptr);
    size_ = PyArray_NBYTES(ndarray);
    capacity_ = size_;
    is_mutable_ = !!(PyArray_FLAGS(ndarray) & NPY_ARRAY_WRITEABLE);
  }
}

NumPyBuffer::~NumPyBuffer() {
  PyAcquireGIL lock;
  Py_XDECREF(arr_);
}

#define TO_ARROW_TYPE_CASE(NPY_NAME, FACTORY) \
  case NPY_##NPY_NAME:                        \
    return FACTORY();

namespace {

Result<std::shared_ptr<DataType>> GetTensorType(PyObject* dtype) {
  if (!PyObject_TypeCheck(dtype, &PyArrayDescr_Type)) {
    return Status::TypeError("Did not pass numpy.dtype object");
  }
  PyArray_Descr* descr = reinterpret_cast<PyArray_Descr*>(dtype);
  int type_num = fix_numpy_type_num(descr->type_num);

  switch (type_num) {
    TO_ARROW_TYPE_CASE(BOOL, uint8);
    TO_ARROW_TYPE_CASE(INT8, int8);
    TO_ARROW_TYPE_CASE(INT16, int16);
    TO_ARROW_TYPE_CASE(INT32, int32);
    TO_ARROW_TYPE_CASE(INT64, int64);
    TO_ARROW_TYPE_CASE(UINT8, uint8);
    TO_ARROW_TYPE_CASE(UINT16, uint16);
    TO_ARROW_TYPE_CASE(UINT32, uint32);
    TO_ARROW_TYPE_CASE(UINT64, uint64);
    TO_ARROW_TYPE_CASE(FLOAT16, float16);
    TO_ARROW_TYPE_CASE(FLOAT32, float32);
    TO_ARROW_TYPE_CASE(FLOAT64, float64);
  }
  return Status::NotImplemented("Unsupported numpy type ", descr->type_num);
}

Status GetNumPyType(const DataType& type, int* type_num) {
#define NUMPY_TYPE_CASE(ARROW_NAME, NPY_NAME) \
  case Type::ARROW_NAME:                      \
    *type_num = NPY_##NPY_NAME;               \
    break;

  switch (type.id()) {
    NUMPY_TYPE_CASE(UINT8, UINT8);
    NUMPY_TYPE_CASE(INT8, INT8);
    NUMPY_TYPE_CASE(UINT16, UINT16);
    NUMPY_TYPE_CASE(INT16, INT16);
    NUMPY_TYPE_CASE(UINT32, UINT32);
    NUMPY_TYPE_CASE(INT32, INT32);
    NUMPY_TYPE_CASE(UINT64, UINT64);
    NUMPY_TYPE_CASE(INT64, INT64);
    NUMPY_TYPE_CASE(HALF_FLOAT, FLOAT16);
    NUMPY_TYPE_CASE(FLOAT, FLOAT32);
    NUMPY_TYPE_CASE(DOUBLE, FLOAT64);
    default: {
      return Status::NotImplemented("Unsupported tensor type: ", type.ToString());
    }
  }
#undef NUMPY_TYPE_CASE

  return Status::OK();
}

}  // namespace

Result<std::shared_ptr<DataType>> NumPyScalarToArrowDataType(PyObject* scalar) {
  PyArray_Descr* descr = PyArray_DescrFromScalar(scalar);
  OwnedRef descr_ref(reinterpret_cast<PyObject*>(descr));
  return NumPyDtypeToArrow(descr);
}

Result<std::shared_ptr<DataType>> NumPyDtypeToArrow(PyObject* dtype) {
  if (!PyObject_TypeCheck(dtype, &PyArrayDescr_Type)) {
    return Status::TypeError("Did not pass numpy.dtype object");
  }
  PyArray_Descr* descr = reinterpret_cast<PyArray_Descr*>(dtype);
  return NumPyDtypeToArrow(descr);
}

Result<std::shared_ptr<DataType>> NumPyDtypeToArrow(PyArray_Descr* descr) {
  int type_num = fix_numpy_type_num(descr->type_num);

  switch (type_num) {
    TO_ARROW_TYPE_CASE(BOOL, boolean);
    TO_ARROW_TYPE_CASE(INT8, int8);
    TO_ARROW_TYPE_CASE(INT16, int16);
    TO_ARROW_TYPE_CASE(INT32, int32);
    TO_ARROW_TYPE_CASE(INT64, int64);
    TO_ARROW_TYPE_CASE(UINT8, uint8);
    TO_ARROW_TYPE_CASE(UINT16, uint16);
    TO_ARROW_TYPE_CASE(UINT32, uint32);
    TO_ARROW_TYPE_CASE(UINT64, uint64);
    TO_ARROW_TYPE_CASE(FLOAT16, float16);
    TO_ARROW_TYPE_CASE(FLOAT32, float32);
    TO_ARROW_TYPE_CASE(FLOAT64, float64);
    TO_ARROW_TYPE_CASE(STRING, binary);
    TO_ARROW_TYPE_CASE(UNICODE, utf8);
    case NPY_DATETIME: {
      auto date_dtype =
          reinterpret_cast<PyArray_DatetimeDTypeMetaData*>(PyDataType_C_METADATA(descr));
      switch (date_dtype->meta.base) {
        case NPY_FR_s:
          return timestamp(TimeUnit::SECOND);
        case NPY_FR_ms:
          return timestamp(TimeUnit::MILLI);
        case NPY_FR_us:
          return timestamp(TimeUnit::MICRO);
        case NPY_FR_ns:
          return timestamp(TimeUnit::NANO);
        case NPY_FR_D:
          return date32();
        case NPY_FR_GENERIC:
          return Status::NotImplemented("Unbound or generic datetime64 time unit");
        default:
          return Status::NotImplemented("Unsupported datetime64 time unit");
      }
    } break;
    case NPY_TIMEDELTA: {
      auto timedelta_dtype =
          reinterpret_cast<PyArray_DatetimeDTypeMetaData*>(PyDataType_C_METADATA(descr));
      switch (timedelta_dtype->meta.base) {
        case NPY_FR_s:
          return duration(TimeUnit::SECOND);
        case NPY_FR_ms:
          return duration(TimeUnit::MILLI);
        case NPY_FR_us:
          return duration(TimeUnit::MICRO);
        case NPY_FR_ns:
          return duration(TimeUnit::NANO);
        case NPY_FR_GENERIC:
          return Status::NotImplemented("Unbound or generic timedelta64 time unit");
        default:
          return Status::NotImplemented("Unsupported timedelta64 time unit");
      }
    } break;
  }

  return Status::NotImplemented("Unsupported numpy type ", descr->type_num);
}

#undef TO_ARROW_TYPE_CASE

Status NdarrayToTensor(MemoryPool* pool, PyObject* ao,
                       const std::vector<std::string>& dim_names,
                       std::shared_ptr<Tensor>* out) {
  if (!PyArray_Check(ao)) {
    return Status::TypeError("Did not pass ndarray object");
  }

  PyArrayObject* ndarray = reinterpret_cast<PyArrayObject*>(ao);

  // TODO(wesm): What do we want to do with non-contiguous memory and negative strides?

  int ndim = PyArray_NDIM(ndarray);

  std::shared_ptr<Buffer> data = std::make_shared<NumPyBuffer>(ao);
  std::vector<int64_t> shape(ndim);
  std::vector<int64_t> strides(ndim);

  npy_intp* array_strides = PyArray_STRIDES(ndarray);
  npy_intp* array_shape = PyArray_SHAPE(ndarray);
  for (int i = 0; i < ndim; ++i) {
    if (array_strides[i] < 0) {
      return Status::Invalid("Negative ndarray strides not supported");
    }
    shape[i] = array_shape[i];
    strides[i] = array_strides[i];
  }

  ARROW_ASSIGN_OR_RAISE(
      auto type, GetTensorType(reinterpret_cast<PyObject*>(PyArray_DESCR(ndarray))));
  *out = std::make_shared<Tensor>(type, data, shape, strides, dim_names);
  return Status::OK();
}

Status TensorToNdarray(const std::shared_ptr<Tensor>& tensor, PyObject* base,
                       PyObject** out) {
  int type_num = 0;
  RETURN_NOT_OK(GetNumPyType(*tensor->type(), &type_num));
  PyArray_Descr* dtype = PyArray_DescrNewFromType(type_num);
  RETURN_IF_PYERROR();

  const int ndim = tensor->ndim();
  std::vector<npy_intp> npy_shape(ndim);
  std::vector<npy_intp> npy_strides(ndim);

  for (int i = 0; i < ndim; ++i) {
    npy_shape[i] = tensor->shape()[i];
    npy_strides[i] = tensor->strides()[i];
  }

  const void* immutable_data = nullptr;
  if (tensor->data()) {
    immutable_data = tensor->data()->data();
  }

  // Remove const =(
  void* mutable_data = const_cast<void*>(immutable_data);

  int array_flags = 0;
  if (tensor->is_row_major()) {
    array_flags |= NPY_ARRAY_C_CONTIGUOUS;
  }
  if (tensor->is_column_major()) {
    array_flags |= NPY_ARRAY_F_CONTIGUOUS;
  }
  if (tensor->is_mutable()) {
    array_flags |= NPY_ARRAY_WRITEABLE;
  }

  PyObject* result =
      PyArray_NewFromDescr(&PyArray_Type, dtype, ndim, npy_shape.data(),
                           npy_strides.data(), mutable_data, array_flags, nullptr);
  RETURN_IF_PYERROR();

  if (base == Py_None || base == nullptr) {
    base = py::wrap_tensor(tensor);
  } else {
    Py_XINCREF(base);
  }
  PyArray_SetBaseObject(reinterpret_cast<PyArrayObject*>(result), base);
  *out = result;
  return Status::OK();
}

// Wrap the dense data of a sparse tensor in a ndarray
static Status SparseTensorDataToNdarray(const SparseTensor& sparse_tensor,
                                        std::vector<npy_intp> data_shape, PyObject* base,
                                        PyObject** out_data) {
  int type_num_data = 0;
  RETURN_NOT_OK(GetNumPyType(*sparse_tensor.type(), &type_num_data));
  PyArray_Descr* dtype_data = PyArray_DescrNewFromType(type_num_data);
  RETURN_IF_PYERROR();

  const void* immutable_data = sparse_tensor.data()->data();
  // Remove const =(
  void* mutable_data = const_cast<void*>(immutable_data);
  int array_flags = NPY_ARRAY_C_CONTIGUOUS | NPY_ARRAY_F_CONTIGUOUS;
  if (sparse_tensor.is_mutable()) {
    array_flags |= NPY_ARRAY_WRITEABLE;
  }

  *out_data = PyArray_NewFromDescr(&PyArray_Type, dtype_data,
                                   static_cast<int>(data_shape.size()), data_shape.data(),
                                   nullptr, mutable_data, array_flags, nullptr);
  RETURN_IF_PYERROR();
  Py_XINCREF(base);
  PyArray_SetBaseObject(reinterpret_cast<PyArrayObject*>(*out_data), base);
  return Status::OK();
}

Status SparseCOOTensorToNdarray(const std::shared_ptr<SparseCOOTensor>& sparse_tensor,
                                PyObject* base, PyObject** out_data,
                                PyObject** out_coords) {
  const auto& sparse_index = arrow::internal::checked_cast<const SparseCOOIndex&>(
      *sparse_tensor->sparse_index());

  // Wrap tensor data
  OwnedRef result_data;
  RETURN_NOT_OK(SparseTensorDataToNdarray(
      *sparse_tensor, {static_cast<npy_intp>(sparse_tensor->non_zero_length()), 1}, base,
      result_data.ref()));

  // Wrap indices
  PyObject* result_coords;
  RETURN_NOT_OK(TensorToNdarray(sparse_index.indices(), base, &result_coords));

  *out_data = result_data.detach();
  *out_coords = result_coords;
  return Status::OK();
}

Status SparseCSXMatrixToNdarray(const std::shared_ptr<SparseTensor>& sparse_tensor,
                                PyObject* base, PyObject** out_data,
                                PyObject** out_indptr, PyObject** out_indices) {
  // Wrap indices
  OwnedRef result_indptr;
  OwnedRef result_indices;

  switch (sparse_tensor->format_id()) {
    case SparseTensorFormat::CSR: {
      const auto& sparse_index = arrow::internal::checked_cast<const SparseCSRIndex&>(
          *sparse_tensor->sparse_index());
      RETURN_NOT_OK(TensorToNdarray(sparse_index.indptr(), base, result_indptr.ref()));
      RETURN_NOT_OK(TensorToNdarray(sparse_index.indices(), base, result_indices.ref()));
      break;
    }
    case SparseTensorFormat::CSC: {
      const auto& sparse_index = arrow::internal::checked_cast<const SparseCSCIndex&>(
          *sparse_tensor->sparse_index());
      RETURN_NOT_OK(TensorToNdarray(sparse_index.indptr(), base, result_indptr.ref()));
      RETURN_NOT_OK(TensorToNdarray(sparse_index.indices(), base, result_indices.ref()));
      break;
    }
    default:
      return Status::NotImplemented("Invalid SparseTensor type.");
  }

  // Wrap tensor data
  OwnedRef result_data;
  RETURN_NOT_OK(SparseTensorDataToNdarray(
      *sparse_tensor, {static_cast<npy_intp>(sparse_tensor->non_zero_length()), 1}, base,
      result_data.ref()));

  *out_data = result_data.detach();
  *out_indptr = result_indptr.detach();
  *out_indices = result_indices.detach();
  return Status::OK();
}

Status SparseCSRMatrixToNdarray(const std::shared_ptr<SparseCSRMatrix>& sparse_tensor,
                                PyObject* base, PyObject** out_data,
                                PyObject** out_indptr, PyObject** out_indices) {
  return SparseCSXMatrixToNdarray(sparse_tensor, base, out_data, out_indptr, out_indices);
}

Status SparseCSCMatrixToNdarray(const std::shared_ptr<SparseCSCMatrix>& sparse_tensor,
                                PyObject* base, PyObject** out_data,
                                PyObject** out_indptr, PyObject** out_indices) {
  return SparseCSXMatrixToNdarray(sparse_tensor, base, out_data, out_indptr, out_indices);
}

Status SparseCSFTensorToNdarray(const std::shared_ptr<SparseCSFTensor>& sparse_tensor,
                                PyObject* base, PyObject** out_data,
                                PyObject** out_indptr, PyObject** out_indices) {
  const auto& sparse_index = arrow::internal::checked_cast<const SparseCSFIndex&>(
      *sparse_tensor->sparse_index());

  // Wrap tensor data
  OwnedRef result_data;
  RETURN_NOT_OK(SparseTensorDataToNdarray(
      *sparse_tensor, {static_cast<npy_intp>(sparse_tensor->non_zero_length()), 1}, base,
      result_data.ref()));

  // Wrap indices
  int ndim = static_cast<int>(sparse_index.indices().size());
  OwnedRef indptr(PyList_New(ndim - 1));
  OwnedRef indices(PyList_New(ndim));
  RETURN_IF_PYERROR();

  for (int i = 0; i < ndim - 1; ++i) {
    PyObject* item;
    RETURN_NOT_OK(TensorToNdarray(sparse_index.indptr()[i], base, &item));
    if (PyList_SetItem(indptr.obj(), i, item) < 0) {
      Py_XDECREF(item);
      RETURN_IF_PYERROR();
    }
  }
  for (int i = 0; i < ndim; ++i) {
    PyObject* item;
    RETURN_NOT_OK(TensorToNdarray(sparse_index.indices()[i], base, &item));
    if (PyList_SetItem(indices.obj(), i, item) < 0) {
      Py_XDECREF(item);
      RETURN_IF_PYERROR();
    }
  }

  *out_indptr = indptr.detach();
  *out_indices = indices.detach();
  *out_data = result_data.detach();
  return Status::OK();
}

Status NdarraysToSparseCOOTensor(MemoryPool* pool, PyObject* data_ao, PyObject* coords_ao,
                                 const std::vector<int64_t>& shape,
                                 const std::vector<std::string>& dim_names,
                                 std::shared_ptr<SparseCOOTensor>* out) {
  if (!PyArray_Check(data_ao) || !PyArray_Check(coords_ao)) {
    return Status::TypeError("Did not pass ndarray object");
  }

  PyArrayObject* ndarray_data = reinterpret_cast<PyArrayObject*>(data_ao);
  std::shared_ptr<Buffer> data = std::make_shared<NumPyBuffer>(data_ao);
  ARROW_ASSIGN_OR_RAISE(
      auto type_data,
      GetTensorType(reinterpret_cast<PyObject*>(PyArray_DESCR(ndarray_data))));

  std::shared_ptr<Tensor> coords;
  RETURN_NOT_OK(NdarrayToTensor(pool, coords_ao, {}, &coords));
  ARROW_CHECK_EQ(coords->type_id(), Type::INT64);  // Should be ensured by caller

  ARROW_ASSIGN_OR_RAISE(std::shared_ptr<SparseCOOIndex> sparse_index,
                        SparseCOOIndex::Make(coords));
  *out = std::make_shared<SparseTensorImpl<SparseCOOIndex>>(sparse_index, type_data, data,
                                                            shape, dim_names);
  return Status::OK();
}

template <class IndexType>
Status NdarraysToSparseCSXMatrix(MemoryPool* pool, PyObject* data_ao, PyObject* indptr_ao,
                                 PyObject* indices_ao, const std::vector<int64_t>& shape,
                                 const std::vector<std::string>& dim_names,
                                 std::shared_ptr<SparseTensorImpl<IndexType>>* out) {
  if (!PyArray_Check(data_ao) || !PyArray_Check(indptr_ao) ||
      !PyArray_Check(indices_ao)) {
    return Status::TypeError("Did not pass ndarray object");
  }

  PyArrayObject* ndarray_data = reinterpret_cast<PyArrayObject*>(data_ao);
  std::shared_ptr<Buffer> data = std::make_shared<NumPyBuffer>(data_ao);
  ARROW_ASSIGN_OR_RAISE(
      auto type_data,
      GetTensorType(reinterpret_cast<PyObject*>(PyArray_DESCR(ndarray_data))));

  std::shared_ptr<Tensor> indptr, indices;
  RETURN_NOT_OK(NdarrayToTensor(pool, indptr_ao, {}, &indptr));
  RETURN_NOT_OK(NdarrayToTensor(pool, indices_ao, {}, &indices));
  ARROW_CHECK_EQ(indptr->type_id(), Type::INT64);   // Should be ensured by caller
  ARROW_CHECK_EQ(indices->type_id(), Type::INT64);  // Should be ensured by caller

  auto sparse_index = std::make_shared<IndexType>(
      std::static_pointer_cast<NumericTensor<Int64Type>>(indptr),
      std::static_pointer_cast<NumericTensor<Int64Type>>(indices));
  *out = std::make_shared<SparseTensorImpl<IndexType>>(sparse_index, type_data, data,
                                                       shape, dim_names);
  return Status::OK();
}

Status NdarraysToSparseCSFTensor(MemoryPool* pool, PyObject* data_ao, PyObject* indptr_ao,
                                 PyObject* indices_ao, const std::vector<int64_t>& shape,
                                 const std::vector<int64_t>& axis_order,
                                 const std::vector<std::string>& dim_names,
                                 std::shared_ptr<SparseCSFTensor>* out) {
  if (!PyArray_Check(data_ao)) {
    return Status::TypeError("Did not pass ndarray object for data");
  }
  const int ndim = static_cast<const int>(shape.size());
  PyArrayObject* ndarray_data = reinterpret_cast<PyArrayObject*>(data_ao);
  std::shared_ptr<Buffer> data = std::make_shared<NumPyBuffer>(data_ao);
  ARROW_ASSIGN_OR_RAISE(
      auto type_data,
      GetTensorType(reinterpret_cast<PyObject*>(PyArray_DESCR(ndarray_data))));

  std::vector<std::shared_ptr<Tensor>> indptr(ndim - 1);
  std::vector<std::shared_ptr<Tensor>> indices(ndim);

  for (int i = 0; i < ndim - 1; ++i) {
#ifdef Py_GIL_DISABLED
    PyObject* item = PySequence_ITEM(indptr_ao, i);
    RETURN_IF_PYERROR();
    OwnedRef item_ref(item);
#else
    PyObject* item = PySequence_Fast_GET_ITEM(indptr_ao, i);
#endif
    if (!PyArray_Check(item)) {
      return Status::TypeError("Did not pass ndarray object for indptr");
    }
    RETURN_NOT_OK(NdarrayToTensor(pool, item, {}, &indptr[i]));
    ARROW_CHECK_EQ(indptr[i]->type_id(), Type::INT64);  // Should be ensured by caller
  }

  for (int i = 0; i < ndim; ++i) {
#ifdef Py_GIL_DISABLED
    PyObject* item = PySequence_ITEM(indices_ao, i);
    RETURN_IF_PYERROR();
    OwnedRef item_ref(item);
#else
    PyObject* item = PySequence_Fast_GET_ITEM(indices_ao, i);
#endif
    if (!PyArray_Check(item)) {
      return Status::TypeError("Did not pass ndarray object for indices");
    }
    RETURN_NOT_OK(NdarrayToTensor(pool, item, {}, &indices[i]));
    ARROW_CHECK_EQ(indices[i]->type_id(), Type::INT64);  // Should be ensured by caller
  }

  auto sparse_index = std::make_shared<SparseCSFIndex>(indptr, indices, axis_order);
  *out = std::make_shared<SparseTensorImpl<SparseCSFIndex>>(sparse_index, type_data, data,
                                                            shape, dim_names);
  return Status::OK();
}

Status NdarraysToSparseCSRMatrix(MemoryPool* pool, PyObject* data_ao, PyObject* indptr_ao,
                                 PyObject* indices_ao, const std::vector<int64_t>& shape,
                                 const std::vector<std::string>& dim_names,
                                 std::shared_ptr<SparseCSRMatrix>* out) {
  return NdarraysToSparseCSXMatrix<SparseCSRIndex>(pool, data_ao, indptr_ao, indices_ao,
                                                   shape, dim_names, out);
}

Status NdarraysToSparseCSCMatrix(MemoryPool* pool, PyObject* data_ao, PyObject* indptr_ao,
                                 PyObject* indices_ao, const std::vector<int64_t>& shape,
                                 const std::vector<std::string>& dim_names,
                                 std::shared_ptr<SparseCSCMatrix>* out) {
  return NdarraysToSparseCSXMatrix<SparseCSCIndex>(pool, data_ao, indptr_ao, indices_ao,
                                                   shape, dim_names, out);
}

Status TensorToSparseCOOTensor(const std::shared_ptr<Tensor>& tensor,
                               std::shared_ptr<SparseCOOTensor>* out) {
  return SparseCOOTensor::Make(*tensor).Value(out);
}

Status TensorToSparseCSRMatrix(const std::shared_ptr<Tensor>& tensor,
                               std::shared_ptr<SparseCSRMatrix>* out) {
  return SparseCSRMatrix::Make(*tensor).Value(out);
}

Status TensorToSparseCSCMatrix(const std::shared_ptr<Tensor>& tensor,
                               std::shared_ptr<SparseCSCMatrix>* out) {
  return SparseCSCMatrix::Make(*tensor).Value(out);
}

Status TensorToSparseCSFTensor(const std::shared_ptr<Tensor>& tensor,
                               std::shared_ptr<SparseCSFTensor>* out) {
  return SparseCSFTensor::Make(*tensor).Value(out);
}

}  // namespace py
}  // namespace arrow