Repository URL to install this package:
|
Version:
1.59.0-ubuntu16 ▾
|
libboost-all-dev
/
usr
/
local
/
include
/
boost
/
geometry
/
strategies
/
cartesian
/
cart_intersect.hpp
|
|---|
// Boost.Geometry (aka GGL, Generic Geometry Library)
// Copyright (c) 2007-2014 Barend Gehrels, Amsterdam, the Netherlands.
// Copyright (c) 2013-2014 Adam Wulkiewicz, Lodz, Poland.
// This file was modified by Oracle on 2014.
// Modifications copyright (c) 2014, Oracle and/or its affiliates.
// Contributed and/or modified by Menelaos Karavelas, on behalf of Oracle
// Contributed and/or modified by Adam Wulkiewicz, on behalf of Oracle
// Use, modification and distribution is subject to the Boost Software License,
// Version 1.0. (See accompanying file LICENSE_1_0.txt or copy at
// http://www.boost.org/LICENSE_1_0.txt)
#ifndef BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP
#define BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP
#include <algorithm>
#include <boost/geometry/core/exception.hpp>
#include <boost/geometry/geometries/concepts/point_concept.hpp>
#include <boost/geometry/geometries/concepts/segment_concept.hpp>
#include <boost/geometry/arithmetic/determinant.hpp>
#include <boost/geometry/algorithms/detail/assign_values.hpp>
#include <boost/geometry/algorithms/detail/assign_indexed_point.hpp>
#include <boost/geometry/algorithms/detail/equals/point_point.hpp>
#include <boost/geometry/algorithms/detail/recalculate.hpp>
#include <boost/geometry/util/math.hpp>
#include <boost/geometry/util/select_calculation_type.hpp>
// Temporary / will be Strategy as template parameter
#include <boost/geometry/strategies/side.hpp>
#include <boost/geometry/strategies/cartesian/side_by_triangle.hpp>
#include <boost/geometry/strategies/side_info.hpp>
#include <boost/geometry/strategies/intersection_result.hpp>
#include <boost/geometry/policies/robustness/robust_point_type.hpp>
#include <boost/geometry/policies/robustness/segment_ratio_type.hpp>
#if defined(BOOST_GEOMETRY_DEBUG_ROBUSTNESS)
# include <boost/geometry/io/wkt/write.hpp>
#endif
namespace boost { namespace geometry
{
namespace strategy { namespace intersection
{
/*!
\see http://mathworld.wolfram.com/Line-LineIntersection.html
*/
template <typename Policy, typename CalculationType = void>
struct relate_cartesian_segments
{
typedef typename Policy::return_type return_type;
template <typename D, typename W, typename ResultType>
static inline void cramers_rule(D const& dx_a, D const& dy_a,
D const& dx_b, D const& dy_b, W const& wx, W const& wy,
// out:
ResultType& d, ResultType& da)
{
// Cramers rule
d = geometry::detail::determinant<ResultType>(dx_a, dy_a, dx_b, dy_b);
da = geometry::detail::determinant<ResultType>(dx_b, dy_b, wx, wy);
// Ratio is da/d , collinear if d == 0, intersecting if 0 <= r <= 1
// IntersectionPoint = (x1 + r * dx_a, y1 + r * dy_a)
}
// Relate segments a and b
template <typename Segment1, typename Segment2, typename RobustPolicy>
static inline return_type apply(Segment1 const& a, Segment2 const& b,
RobustPolicy const& robust_policy)
{
// type them all as in Segment1 - TODO reconsider this, most precise?
typedef typename geometry::point_type<Segment1>::type point_type;
typedef typename geometry::robust_point_type
<
point_type, RobustPolicy
>::type robust_point_type;
point_type a0, a1, b0, b1;
robust_point_type a0_rob, a1_rob, b0_rob, b1_rob;
detail::assign_point_from_index<0>(a, a0);
detail::assign_point_from_index<1>(a, a1);
detail::assign_point_from_index<0>(b, b0);
detail::assign_point_from_index<1>(b, b1);
geometry::recalculate(a0_rob, a0, robust_policy);
geometry::recalculate(a1_rob, a1, robust_policy);
geometry::recalculate(b0_rob, b0, robust_policy);
geometry::recalculate(b1_rob, b1, robust_policy);
return apply(a, b, robust_policy, a0_rob, a1_rob, b0_rob, b1_rob);
}
// The main entry-routine, calculating intersections of segments a / b
template <typename Segment1, typename Segment2, typename RobustPolicy, typename RobustPoint>
static inline return_type apply(Segment1 const& a, Segment2 const& b,
RobustPolicy const& robust_policy,
RobustPoint const& robust_a1, RobustPoint const& robust_a2,
RobustPoint const& robust_b1, RobustPoint const& robust_b2)
{
BOOST_CONCEPT_ASSERT( (concept::ConstSegment<Segment1>) );
BOOST_CONCEPT_ASSERT( (concept::ConstSegment<Segment2>) );
boost::ignore_unused_variable_warning(robust_policy);
using geometry::detail::equals::equals_point_point;
bool const a_is_point = equals_point_point(robust_a1, robust_a2);
bool const b_is_point = equals_point_point(robust_b1, robust_b2);
if(a_is_point && b_is_point)
{
return equals_point_point(robust_a1, robust_b2)
? Policy::degenerate(a, true)
: Policy::disjoint()
;
}
typedef typename select_calculation_type
<Segment1, Segment2, CalculationType>::type coordinate_type;
typedef side::side_by_triangle<coordinate_type> side;
side_info sides;
sides.set<0>(side::apply(robust_b1, robust_b2, robust_a1),
side::apply(robust_b1, robust_b2, robust_a2));
if (sides.same<0>())
{
// Both points are at same side of other segment, we can leave
return Policy::disjoint();
}
sides.set<1>(side::apply(robust_a1, robust_a2, robust_b1),
side::apply(robust_a1, robust_a2, robust_b2));
if (sides.same<1>())
{
// Both points are at same side of other segment, we can leave
return Policy::disjoint();
}
bool collinear = sides.collinear();
typedef typename select_most_precise
<
coordinate_type, double
>::type promoted_type;
typedef typename geometry::coordinate_type
<
RobustPoint
>::type robust_coordinate_type;
typedef typename segment_ratio_type
<
typename geometry::point_type<Segment1>::type, // TODO: most precise point?
RobustPolicy
>::type ratio_type;
segment_intersection_info
<
coordinate_type,
promoted_type,
ratio_type
> sinfo;
sinfo.dx_a = get<1, 0>(a) - get<0, 0>(a); // distance in x-dir
sinfo.dx_b = get<1, 0>(b) - get<0, 0>(b);
sinfo.dy_a = get<1, 1>(a) - get<0, 1>(a); // distance in y-dir
sinfo.dy_b = get<1, 1>(b) - get<0, 1>(b);
robust_coordinate_type const robust_dx_a = get<0>(robust_a2) - get<0>(robust_a1);
robust_coordinate_type const robust_dx_b = get<0>(robust_b2) - get<0>(robust_b1);
robust_coordinate_type const robust_dy_a = get<1>(robust_a2) - get<1>(robust_a1);
robust_coordinate_type const robust_dy_b = get<1>(robust_b2) - get<1>(robust_b1);
// r: ratio 0-1 where intersection divides A/B
// (only calculated for non-collinear segments)
if (! collinear)
{
robust_coordinate_type robust_da0, robust_da;
robust_coordinate_type robust_db0, robust_db;
cramers_rule(robust_dx_a, robust_dy_a, robust_dx_b, robust_dy_b,
get<0>(robust_a1) - get<0>(robust_b1),
get<1>(robust_a1) - get<1>(robust_b1),
robust_da0, robust_da);
cramers_rule(robust_dx_b, robust_dy_b, robust_dx_a, robust_dy_a,
get<0>(robust_b1) - get<0>(robust_a1),
get<1>(robust_b1) - get<1>(robust_a1),
robust_db0, robust_db);
math::detail::equals_factor_policy<robust_coordinate_type>
policy(robust_dx_a, robust_dy_a, robust_dx_b, robust_dy_b);
robust_coordinate_type const zero = 0;
if (math::detail::equals_by_policy(robust_da0, zero, policy)
|| math::detail::equals_by_policy(robust_db0, zero, policy))
{
// If this is the case, no rescaling is done for FP precision.
// We set it to collinear, but it indicates a robustness issue.
sides.set<0>(0,0);
sides.set<1>(0,0);
collinear = true;
}
else
{
sinfo.robust_ra.assign(robust_da, robust_da0);
sinfo.robust_rb.assign(robust_db, robust_db0);
}
}
if (collinear)
{
std::pair<bool, bool> const collinear_use_first
= is_x_more_significant(geometry::math::abs(robust_dx_a),
geometry::math::abs(robust_dy_a),
geometry::math::abs(robust_dx_b),
geometry::math::abs(robust_dy_b),
a_is_point, b_is_point);
if (collinear_use_first.second)
{
// Degenerate cases: segments of single point, lying on other segment, are not disjoint
// This situation is collinear too
if (collinear_use_first.first)
{
return relate_collinear<0, ratio_type>(a, b,
robust_a1, robust_a2, robust_b1, robust_b2,
a_is_point, b_is_point);
}
else
{
// Y direction contains larger segments (maybe dx is zero)
return relate_collinear<1, ratio_type>(a, b,
robust_a1, robust_a2, robust_b1, robust_b2,
a_is_point, b_is_point);
}
}
}
return Policy::segments_crosses(sides, sinfo, a, b);
}
private:
// first is true if x is more significant
// second is true if the more significant difference is not 0
template <typename RobustCoordinateType>
static inline std::pair<bool, bool>
is_x_more_significant(RobustCoordinateType const& abs_robust_dx_a,
RobustCoordinateType const& abs_robust_dy_a,
RobustCoordinateType const& abs_robust_dx_b,
RobustCoordinateType const& abs_robust_dy_b,
bool const a_is_point,
bool const b_is_point)
{
//BOOST_GEOMETRY_ASSERT_MSG(!(a_is_point && b_is_point), "both segments shouldn't be degenerated");
// for degenerated segments the second is always true because this function
// shouldn't be called if both segments were degenerated
if (a_is_point)
{
return std::make_pair(abs_robust_dx_b >= abs_robust_dy_b, true);
}
else if (b_is_point)
{
return std::make_pair(abs_robust_dx_a >= abs_robust_dy_a, true);
}
else
{
RobustCoordinateType const min_dx = (std::min)(abs_robust_dx_a, abs_robust_dx_b);
RobustCoordinateType const min_dy = (std::min)(abs_robust_dy_a, abs_robust_dy_b);
return min_dx == min_dy ?
std::make_pair(true, min_dx > RobustCoordinateType(0)) :
std::make_pair(min_dx > min_dy, true);
}
}
template
<
std::size_t Dimension,
typename RatioType,
typename Segment1,
typename Segment2,
typename RobustPoint
>
static inline return_type relate_collinear(Segment1 const& a,
Segment2 const& b,
RobustPoint const& robust_a1, RobustPoint const& robust_a2,
RobustPoint const& robust_b1, RobustPoint const& robust_b2,
bool a_is_point, bool b_is_point)
{
if (a_is_point)
{
return relate_one_degenerate<RatioType>(a,
get<Dimension>(robust_a1),
get<Dimension>(robust_b1), get<Dimension>(robust_b2),
true);
}
if (b_is_point)
{
return relate_one_degenerate<RatioType>(b,
get<Dimension>(robust_b1),
get<Dimension>(robust_a1), get<Dimension>(robust_a2),
false);
}
return relate_collinear<RatioType>(a, b,
get<Dimension>(robust_a1),
get<Dimension>(robust_a2),
get<Dimension>(robust_b1),
get<Dimension>(robust_b2));
}
/// Relate segments known collinear
template
<
typename RatioType,
typename Segment1,
typename Segment2,
typename RobustType
>
static inline return_type relate_collinear(Segment1 const& a
, Segment2 const& b
, RobustType oa_1, RobustType oa_2
, RobustType ob_1, RobustType ob_2
)
{
// Calculate the ratios where a starts in b, b starts in a
// a1--------->a2 (2..7)
// b1----->b2 (5..8)
// length_a: 7-2=5
// length_b: 8-5=3
// b1 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a)
// b2 is located w.r.t. a at ratio: (8-2)/5=6/5 (right of a)
// a1 is located w.r.t. b at ratio: (2-5)/3=-3/3 (left of b)
// a2 is located w.r.t. b at ratio: (7-5)/3=2/3 (on b)
// A arrives (a2 on b), B departs (b1 on a)
// If both are reversed:
// a2<---------a1 (7..2)
// b2<-----b1 (8..5)
// length_a: 2-7=-5
// length_b: 5-8=-3
// b1 is located w.r.t. a at ratio: (8-7)/-5=-1/5 (before a starts)
// b2 is located w.r.t. a at ratio: (5-7)/-5=2/5 (on a)
// a1 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b)
// a2 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends)
// If both one is reversed:
// a1--------->a2 (2..7)
// b2<-----b1 (8..5)
// length_a: 7-2=+5
// length_b: 5-8=-3
// b1 is located w.r.t. a at ratio: (8-2)/5=6/5 (after a ends)
// b2 is located w.r.t. a at ratio: (5-2)/5=3/5 (on a)
// a1 is located w.r.t. b at ratio: (2-8)/-3=6/3 (after b ends)
// a2 is located w.r.t. b at ratio: (7-8)/-3=1/3 (on b)
RobustType const length_a = oa_2 - oa_1; // no abs, see above
RobustType const length_b = ob_2 - ob_1;
RatioType ra_from(oa_1 - ob_1, length_b);
RatioType ra_to(oa_2 - ob_1, length_b);
RatioType rb_from(ob_1 - oa_1, length_a);
RatioType rb_to(ob_2 - oa_1, length_a);
// use absolute measure to detect endpoints intersection
// NOTE: it'd be possible to calculate bx_wrt_a using ax_wrt_b values
int const a1_wrt_b = position_value(oa_1, ob_1, ob_2);
int const a2_wrt_b = position_value(oa_2, ob_1, ob_2);
int const b1_wrt_a = position_value(ob_1, oa_1, oa_2);
int const b2_wrt_a = position_value(ob_2, oa_1, oa_2);
// fix the ratios if necessary
// CONSIDER: fixing ratios also in other cases, if they're inconsistent
// e.g. if ratio == 1 or 0 (so IP at the endpoint)
// but position value indicates that the IP is in the middle of the segment
// because one of the segments is very long
// In such case the ratios could be moved into the middle direction
// by some small value (e.g. EPS+1ULP)
if (a1_wrt_b == 1)
{
ra_from.assign(0, 1);
rb_from.assign(0, 1);
}
else if (a1_wrt_b == 3)
{
ra_from.assign(1, 1);
rb_to.assign(0, 1);
}
if (a2_wrt_b == 1)
{
ra_to.assign(0, 1);
rb_from.assign(1, 1);
}
else if (a2_wrt_b == 3)
{
ra_to.assign(1, 1);
rb_to.assign(1, 1);
}
if ((a1_wrt_b < 1 && a2_wrt_b < 1) || (a1_wrt_b > 3 && a2_wrt_b > 3))
//if ((ra_from.left() && ra_to.left()) || (ra_from.right() && ra_to.right()))
{
return Policy::disjoint();
}
bool const opposite = math::sign(length_a) != math::sign(length_b);
return Policy::segments_collinear(a, b, opposite,
a1_wrt_b, a2_wrt_b, b1_wrt_a, b2_wrt_a,
ra_from, ra_to, rb_from, rb_to);
}
/// Relate segments where one is degenerate
template
<
typename RatioType,
typename DegenerateSegment,
typename RobustType
>
static inline return_type relate_one_degenerate(
DegenerateSegment const& degenerate_segment
, RobustType d
, RobustType s1, RobustType s2
, bool a_degenerate
)
{
// Calculate the ratios where ds starts in s
// a1--------->a2 (2..6)
// b1/b2 (4..4)
// Ratio: (4-2)/(6-2)
RatioType const ratio(d - s1, s2 - s1);
if (!ratio.on_segment())
{
return Policy::disjoint();
}
return Policy::one_degenerate(degenerate_segment, ratio, a_degenerate);
}
template <typename ProjCoord1, typename ProjCoord2>
static inline int position_value(ProjCoord1 const& ca1,
ProjCoord2 const& cb1,
ProjCoord2 const& cb2)
{
// S1x 0 1 2 3 4
// S2 |---------->
return math::equals(ca1, cb1) ? 1
: math::equals(ca1, cb2) ? 3
: cb1 < cb2 ?
( ca1 < cb1 ? 0
: ca1 > cb2 ? 4
: 2 )
: ( ca1 > cb1 ? 0
: ca1 < cb2 ? 4
: 2 );
}
};
}} // namespace strategy::intersection
}} // namespace boost::geometry
#endif // BOOST_GEOMETRY_STRATEGIES_CARTESIAN_INTERSECTION_HPP