Repository URL to install this package:
|
Version:
3.2.0-ubuntu16-cuda8 ▾
|
/*M///////////////////////////////////////////////////////////////////////////////////////
//
// IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
// By downloading, copying, installing or using the software you agree to this license.
// If you do not agree to this license, do not download, install,
// copy or use the software.
//
//
// License Agreement
// For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
// * Redistribution's of source code must retain the above copyright notice,
// this list of conditions and the following disclaimer.
//
// * Redistribution's in binary form must reproduce the above copyright notice,
// this list of conditions and the following disclaimer in the documentation
// and/or other materials provided with the distribution.
//
// * The name of the copyright holders may not be used to endorse or promote products
// derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/
#pragma once
#ifndef OPENCV_CUDEV_GRID_REDUCE_TO_COLUMN_DETAIL_HPP
#define OPENCV_CUDEV_GRID_REDUCE_TO_COLUMN_DETAIL_HPP
#include "../../common.hpp"
#include "../../util/saturate_cast.hpp"
#include "../../block/reduce.hpp"
namespace cv { namespace cudev {
namespace grid_reduce_to_vec_detail
{
template <int BLOCK_SIZE, typename work_type, typename work_elem_type, class Reductor, int cn> struct Reduce;
template <int BLOCK_SIZE, typename work_type, typename work_elem_type, class Reductor> struct Reduce<BLOCK_SIZE, work_type, work_elem_type, Reductor, 1>
{
__device__ __forceinline__ static void call(work_elem_type smem[1][BLOCK_SIZE], work_type& myVal)
{
typename Reductor::template rebind<work_elem_type>::other op;
blockReduce<BLOCK_SIZE>(smem[0], myVal, threadIdx.x, op);
}
};
template <int BLOCK_SIZE, typename work_type, typename work_elem_type, class Reductor> struct Reduce<BLOCK_SIZE, work_type, work_elem_type, Reductor, 2>
{
__device__ __forceinline__ static void call(work_elem_type smem[2][BLOCK_SIZE], work_type& myVal)
{
typename Reductor::template rebind<work_elem_type>::other op;
blockReduce<BLOCK_SIZE>(smem_tuple(smem[0], smem[1]), tie(myVal.x, myVal.y), threadIdx.x, make_tuple(op, op));
}
};
template <int BLOCK_SIZE, typename work_type, typename work_elem_type, class Reductor> struct Reduce<BLOCK_SIZE, work_type, work_elem_type, Reductor, 3>
{
__device__ __forceinline__ static void call(work_elem_type smem[3][BLOCK_SIZE], work_type& myVal)
{
typename Reductor::template rebind<work_elem_type>::other op;
blockReduce<BLOCK_SIZE>(smem_tuple(smem[0], smem[1], smem[2]), tie(myVal.x, myVal.y, myVal.z), threadIdx.x, make_tuple(op, op, op));
}
};
template <int BLOCK_SIZE, typename work_type, typename work_elem_type, class Reductor> struct Reduce<BLOCK_SIZE, work_type, work_elem_type, Reductor, 4>
{
__device__ __forceinline__ static void call(work_elem_type smem[4][BLOCK_SIZE], work_type& myVal)
{
typename Reductor::template rebind<work_elem_type>::other op;
blockReduce<BLOCK_SIZE>(smem_tuple(smem[0], smem[1], smem[2], smem[3]), tie(myVal.x, myVal.y, myVal.z, myVal.w), threadIdx.x, make_tuple(op, op, op, op));
}
};
template <class Reductor, int BLOCK_SIZE, class SrcPtr, typename ResType, class MaskPtr>
__global__ void reduceToColumn(const SrcPtr src, ResType* dst, const MaskPtr mask, const int cols)
{
typedef typename Reductor::work_type work_type;
typedef typename VecTraits<work_type>::elem_type work_elem_type;
const int cn = VecTraits<work_type>::cn;
__shared__ work_elem_type smem[cn][BLOCK_SIZE];
const int y = blockIdx.x;
work_type myVal = Reductor::initialValue();
Reductor op;
for (int x = threadIdx.x; x < cols; x += BLOCK_SIZE)
{
if (mask(y, x))
{
myVal = op(myVal, saturate_cast<work_type>(src(y, x)));
}
}
Reduce<BLOCK_SIZE, work_type, work_elem_type, Reductor, cn>::call(smem, myVal);
if (threadIdx.x == 0)
dst[y] = saturate_cast<ResType>(Reductor::result(myVal, cols));
}
template <class Reductor, class Policy, class SrcPtr, typename ResType, class MaskPtr>
__host__ void reduceToColumn(const SrcPtr& src, ResType* dst, const MaskPtr& mask, int rows, int cols, cudaStream_t stream)
{
const int BLOCK_SIZE_X = Policy::block_size_x;
const int BLOCK_SIZE_Y = Policy::block_size_y;
const int BLOCK_SIZE = BLOCK_SIZE_X * BLOCK_SIZE_Y;
const dim3 block(BLOCK_SIZE);
const dim3 grid(rows);
reduceToColumn<Reductor, BLOCK_SIZE><<<grid, block, 0, stream>>>(src, dst, mask, cols);
CV_CUDEV_SAFE_CALL( cudaGetLastError() );
if (stream == 0)
CV_CUDEV_SAFE_CALL( cudaDeviceSynchronize() );
}
}
}}
#endif