Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Debian packages RPM packages NuGet packages

Repository URL to install this package:

Details    
libopencv-dev / usr / local / include / opencv2 / cudev / grid / reduce_to_vec.hpp
Size: Mime:
/*M///////////////////////////////////////////////////////////////////////////////////////
//
//  IMPORTANT: READ BEFORE DOWNLOADING, COPYING, INSTALLING OR USING.
//
//  By downloading, copying, installing or using the software you agree to this license.
//  If you do not agree to this license, do not download, install,
//  copy or use the software.
//
//
//                          License Agreement
//                For Open Source Computer Vision Library
//
// Copyright (C) 2000-2008, Intel Corporation, all rights reserved.
// Copyright (C) 2009, Willow Garage Inc., all rights reserved.
// Copyright (C) 2013, OpenCV Foundation, all rights reserved.
// Third party copyrights are property of their respective owners.
//
// Redistribution and use in source and binary forms, with or without modification,
// are permitted provided that the following conditions are met:
//
//   * Redistribution's of source code must retain the above copyright notice,
//     this list of conditions and the following disclaimer.
//
//   * Redistribution's in binary form must reproduce the above copyright notice,
//     this list of conditions and the following disclaimer in the documentation
//     and/or other materials provided with the distribution.
//
//   * The name of the copyright holders may not be used to endorse or promote products
//     derived from this software without specific prior written permission.
//
// This software is provided by the copyright holders and contributors "as is" and
// any express or implied warranties, including, but not limited to, the implied
// warranties of merchantability and fitness for a particular purpose are disclaimed.
// In no event shall the Intel Corporation or contributors be liable for any direct,
// indirect, incidental, special, exemplary, or consequential damages
// (including, but not limited to, procurement of substitute goods or services;
// loss of use, data, or profits; or business interruption) however caused
// and on any theory of liability, whether in contract, strict liability,
// or tort (including negligence or otherwise) arising in any way out of
// the use of this software, even if advised of the possibility of such damage.
//
//M*/

#pragma once

#ifndef __OPENCV_CUDEV_GRID_REDUCE_TO_VEC_HPP__
#define __OPENCV_CUDEV_GRID_REDUCE_TO_VEC_HPP__

#include "../common.hpp"
#include "../util/vec_traits.hpp"
#include "../util/limits.hpp"
#include "../util/saturate_cast.hpp"
#include "../ptr2d/traits.hpp"
#include "../ptr2d/gpumat.hpp"
#include "../ptr2d/mask.hpp"
#include "../functional/functional.hpp"
#include "detail/reduce_to_column.hpp"
#include "detail/reduce_to_row.hpp"

namespace cv { namespace cudev {

//! @addtogroup cudev
//! @{

template <typename T> struct Sum : plus<T>
{
    typedef T work_type;

    template <typename U> struct rebind
    {
        typedef Sum<U> other;
    };

    __device__ __forceinline__ static T initialValue()
    {
        return VecTraits<T>::all(0);
    }

    __device__ __forceinline__ static T result(T r, int)
    {
        return r;
    }
};

template <typename T> struct Avg : plus<T>
{
    typedef T work_type;

    template <typename U> struct rebind
    {
        typedef Avg<U> other;
    };

    __device__ __forceinline__ static T initialValue()
    {
        return VecTraits<T>::all(0);
    }

    __device__ __forceinline__ static T result(T r, float sz)
    {
        return saturate_cast<T>(r / sz);
    }
};

template <typename T> struct Min : minimum<T>
{
    typedef T work_type;

    template <typename U> struct rebind
    {
        typedef Min<U> other;
    };

    __device__ __forceinline__ static T initialValue()
    {
        return VecTraits<T>::all(numeric_limits<typename VecTraits<T>::elem_type>::max());
    }

    __device__ __forceinline__ static T result(T r, int)
    {
        return r;
    }
};

template <typename T> struct Max : maximum<T>
{
    typedef T work_type;

    template <typename U> struct rebind
    {
        typedef Max<U> other;
    };

    __device__ __forceinline__ static T initialValue()
    {
        return VecTraits<T>::all(-numeric_limits<typename VecTraits<T>::elem_type>::max());
    }

    __device__ __forceinline__ static T result(T r, int)
    {
        return r;
    }
};

template <class Reductor, class SrcPtr, typename ResType, class MaskPtr>
__host__ void gridReduceToRow(const SrcPtr& src, GpuMat_<ResType>& dst, const MaskPtr& mask, Stream& stream = Stream::Null())
{
    const int rows = getRows(src);
    const int cols = getCols(src);

    CV_Assert( getRows(mask) == rows && getCols(mask) == cols );

    dst.create(1, cols);

    grid_reduce_to_vec_detail::reduceToRow<Reductor>(shrinkPtr(src),
                                                     dst[0],
                                                     shrinkPtr(mask),
                                                     rows, cols,
                                                     StreamAccessor::getStream(stream));
}

template <class Reductor, class SrcPtr, typename ResType>
__host__ void gridReduceToRow(const SrcPtr& src, GpuMat_<ResType>& dst, Stream& stream = Stream::Null())
{
    const int rows = getRows(src);
    const int cols = getCols(src);

    dst.create(1, cols);

    grid_reduce_to_vec_detail::reduceToRow<Reductor>(shrinkPtr(src),
                                                     dst[0],
                                                     WithOutMask(),
                                                     rows, cols,
                                                     StreamAccessor::getStream(stream));
}

template <class Reductor, class Policy, class SrcPtr, typename ResType, class MaskPtr>
__host__ void gridReduceToColumn_(const SrcPtr& src, GpuMat_<ResType>& dst, const MaskPtr& mask, Stream& stream = Stream::Null())
{
    const int rows = getRows(src);
    const int cols = getCols(src);

    CV_Assert( getRows(mask) == rows && getCols(mask) == cols );

    dst.create(1, rows);

    grid_reduce_to_vec_detail::reduceToColumn<Reductor, Policy>(shrinkPtr(src),
                                                                dst[0],
                                                                shrinkPtr(mask),
                                                                rows, cols,
                                                                StreamAccessor::getStream(stream));
}

template <class Reductor, class Policy, class SrcPtr, typename ResType>
__host__ void gridReduceToColumn_(const SrcPtr& src, GpuMat_<ResType>& dst, Stream& stream = Stream::Null())
{
    const int rows = getRows(src);
    const int cols = getCols(src);

    dst.create(1, rows);

    grid_reduce_to_vec_detail::reduceToColumn<Reductor, Policy>(shrinkPtr(src),
                                                                dst[0],
                                                                WithOutMask(),
                                                                rows, cols,
                                                                StreamAccessor::getStream(stream));
}

// default policy

struct DefaultReduceToVecPolicy
{
    enum {
        block_size_x = 32,
        block_size_y = 8
    };
};

template <class Reductor, class SrcPtr, typename ResType, class MaskPtr>
__host__ void gridReduceToColumn(const SrcPtr& src, GpuMat_<ResType>& dst, const MaskPtr& mask, Stream& stream = Stream::Null())
{
    gridReduceToColumn_<Reductor, DefaultReduceToVecPolicy>(src, dst, mask, stream);
}

template <class Reductor, class SrcPtr, typename ResType>
__host__ void gridReduceToColumn(const SrcPtr& src, GpuMat_<ResType>& dst, Stream& stream = Stream::Null())
{
    gridReduceToColumn_<Reductor, DefaultReduceToVecPolicy>(src, dst, stream);
}

//! @}

}}

#endif