Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / scikit-learn   python

Repository URL to install this package:

Version: 0.23.2 

/ manifold / tests / test_spectral_embedding.py

import pytest

import numpy as np

from scipy import sparse
from scipy.sparse import csgraph
from scipy.linalg import eigh

from sklearn.manifold import SpectralEmbedding
from sklearn.manifold._spectral_embedding import _graph_is_connected
from sklearn.manifold._spectral_embedding import _graph_connected_component
from sklearn.manifold import spectral_embedding
from sklearn.metrics.pairwise import rbf_kernel
from sklearn.metrics import normalized_mutual_info_score
from sklearn.neighbors import NearestNeighbors
from sklearn.cluster import KMeans
from sklearn.datasets import make_blobs
from sklearn.utils.extmath import _deterministic_vector_sign_flip
from sklearn.utils._testing import assert_array_almost_equal
from sklearn.utils._testing import assert_array_equal


# non centered, sparse centers to check the
centers = np.array([
    [0.0, 5.0, 0.0, 0.0, 0.0],
    [0.0, 0.0, 4.0, 0.0, 0.0],
    [1.0, 0.0, 0.0, 5.0, 1.0],
])
n_samples = 1000
n_clusters, n_features = centers.shape
S, true_labels = make_blobs(n_samples=n_samples, centers=centers,
                            cluster_std=1., random_state=42)


def _assert_equal_with_sign_flipping(A, B, tol=0.0):
    """ Check array A and B are equal with possible sign flipping on
    each columns"""
    tol_squared = tol ** 2
    for A_col, B_col in zip(A.T, B.T):
        assert (np.max((A_col - B_col) ** 2) <= tol_squared or
                np.max((A_col + B_col) ** 2) <= tol_squared)


def test_sparse_graph_connected_component():
    rng = np.random.RandomState(42)
    n_samples = 300
    boundaries = [0, 42, 121, 200, n_samples]
    p = rng.permutation(n_samples)
    connections = []

    for start, stop in zip(boundaries[:-1], boundaries[1:]):
        group = p[start:stop]
        # Connect all elements within the group at least once via an
        # arbitrary path that spans the group.
        for i in range(len(group) - 1):
            connections.append((group[i], group[i + 1]))

        # Add some more random connections within the group
        min_idx, max_idx = 0, len(group) - 1
        n_random_connections = 1000
        source = rng.randint(min_idx, max_idx, size=n_random_connections)
        target = rng.randint(min_idx, max_idx, size=n_random_connections)
        connections.extend(zip(group[source], group[target]))

    # Build a symmetric affinity matrix
    row_idx, column_idx = tuple(np.array(connections).T)
    data = rng.uniform(.1, 42, size=len(connections))
    affinity = sparse.coo_matrix((data, (row_idx, column_idx)))
    affinity = 0.5 * (affinity + affinity.T)

    for start, stop in zip(boundaries[:-1], boundaries[1:]):
        component_1 = _graph_connected_component(affinity, p[start])
        component_size = stop - start
        assert component_1.sum() == component_size

        # We should retrieve the same component mask by starting by both ends
        # of the group
        component_2 = _graph_connected_component(affinity, p[stop - 1])
        assert component_2.sum() == component_size
        assert_array_equal(component_1, component_2)


def test_spectral_embedding_two_components(seed=36):
    # Test spectral embedding with two components
    random_state = np.random.RandomState(seed)
    n_sample = 100
    affinity = np.zeros(shape=[n_sample * 2, n_sample * 2])
    # first component
    affinity[0:n_sample,
             0:n_sample] = np.abs(random_state.randn(n_sample, n_sample)) + 2
    # second component
    affinity[n_sample::,
             n_sample::] = np.abs(random_state.randn(n_sample, n_sample)) + 2

    # Test of internal _graph_connected_component before connection
    component = _graph_connected_component(affinity, 0)
    assert component[:n_sample].all()
    assert not component[n_sample:].any()
    component = _graph_connected_component(affinity, -1)
    assert not component[:n_sample].any()
    assert component[n_sample:].all()

    # connection
    affinity[0, n_sample + 1] = 1
    affinity[n_sample + 1, 0] = 1
    affinity.flat[::2 * n_sample + 1] = 0
    affinity = 0.5 * (affinity + affinity.T)

    true_label = np.zeros(shape=2 * n_sample)
    true_label[0:n_sample] = 1

    se_precomp = SpectralEmbedding(n_components=1, affinity="precomputed",
                                   random_state=np.random.RandomState(seed))
    embedded_coordinate = se_precomp.fit_transform(affinity)
    # Some numpy versions are touchy with types
    embedded_coordinate = \
        se_precomp.fit_transform(affinity.astype(np.float32))
    # thresholding on the first components using 0.
    label_ = np.array(embedded_coordinate.ravel() < 0, dtype="float")
    assert normalized_mutual_info_score(
        true_label, label_) == pytest.approx(1.0)


@pytest.mark.parametrize("X", [S, sparse.csr_matrix(S)],
                         ids=["dense", "sparse"])
def test_spectral_embedding_precomputed_affinity(X, seed=36):
    # Test spectral embedding with precomputed kernel
    gamma = 1.0
    se_precomp = SpectralEmbedding(n_components=2, affinity="precomputed",
                                   random_state=np.random.RandomState(seed))
    se_rbf = SpectralEmbedding(n_components=2, affinity="rbf",
                               gamma=gamma,
                               random_state=np.random.RandomState(seed))
    embed_precomp = se_precomp.fit_transform(rbf_kernel(X, gamma=gamma))
    embed_rbf = se_rbf.fit_transform(X)
    assert_array_almost_equal(
        se_precomp.affinity_matrix_, se_rbf.affinity_matrix_)
    _assert_equal_with_sign_flipping(embed_precomp, embed_rbf, 0.05)


def test_precomputed_nearest_neighbors_filtering():
    # Test precomputed graph filtering when containing too many neighbors
    n_neighbors = 2
    results = []
    for additional_neighbors in [0, 10]:
        nn = NearestNeighbors(
            n_neighbors=n_neighbors + additional_neighbors).fit(S)
        graph = nn.kneighbors_graph(S, mode='connectivity')
        embedding = SpectralEmbedding(random_state=0, n_components=2,
                                      affinity='precomputed_nearest_neighbors',
                                      n_neighbors=n_neighbors
                                      ).fit(graph).embedding_
        results.append(embedding)

    assert_array_equal(results[0], results[1])


@pytest.mark.parametrize("X", [S, sparse.csr_matrix(S)],
                         ids=["dense", "sparse"])
def test_spectral_embedding_callable_affinity(X, seed=36):
    # Test spectral embedding with callable affinity
    gamma = 0.9
    kern = rbf_kernel(S, gamma=gamma)
    se_callable = SpectralEmbedding(n_components=2,
                                    affinity=(
                                        lambda x: rbf_kernel(x, gamma=gamma)),
                                    gamma=gamma,
                                    random_state=np.random.RandomState(seed))
    se_rbf = SpectralEmbedding(n_components=2, affinity="rbf",
                               gamma=gamma,
                               random_state=np.random.RandomState(seed))
    embed_rbf = se_rbf.fit_transform(X)
    embed_callable = se_callable.fit_transform(X)
    assert_array_almost_equal(
        se_callable.affinity_matrix_, se_rbf.affinity_matrix_)
    assert_array_almost_equal(kern, se_rbf.affinity_matrix_)
    _assert_equal_with_sign_flipping(embed_rbf, embed_callable, 0.05)


# TODO: Remove when pyamg does replaces sp.rand call with np.random.rand
# https://github.com/scikit-learn/scikit-learn/issues/15913
@pytest.mark.filterwarnings(
    "ignore:scipy.rand is deprecated:DeprecationWarning:pyamg.*")
def test_spectral_embedding_amg_solver(seed=36):
    # Test spectral embedding with amg solver
    pytest.importorskip('pyamg')

    se_amg = SpectralEmbedding(n_components=2, affinity="nearest_neighbors",
                               eigen_solver="amg", n_neighbors=5,
                               random_state=np.random.RandomState(seed))
    se_arpack = SpectralEmbedding(n_components=2, affinity="nearest_neighbors",
                                  eigen_solver="arpack", n_neighbors=5,
                                  random_state=np.random.RandomState(seed))
    embed_amg = se_amg.fit_transform(S)
    embed_arpack = se_arpack.fit_transform(S)
    _assert_equal_with_sign_flipping(embed_amg, embed_arpack, 1e-5)

    # same with special case in which amg is not actually used
    # regression test for #10715
    # affinity between nodes
    row = [0, 0, 1, 2, 3, 3, 4]
    col = [1, 2, 2, 3, 4, 5, 5]
    val = [100, 100, 100, 1, 100, 100, 100]

    affinity = sparse.coo_matrix((val + val, (row + col, col + row)),
                                 shape=(6, 6)).toarray()
    se_amg.affinity = "precomputed"
    se_arpack.affinity = "precomputed"
    embed_amg = se_amg.fit_transform(affinity)
    embed_arpack = se_arpack.fit_transform(affinity)
    _assert_equal_with_sign_flipping(embed_amg, embed_arpack, 1e-5)


# TODO: Remove filterwarnings when pyamg does replaces sp.rand call with
# np.random.rand:
# https://github.com/scikit-learn/scikit-learn/issues/15913
@pytest.mark.filterwarnings(
    "ignore:scipy.rand is deprecated:DeprecationWarning:pyamg.*")
def test_spectral_embedding_amg_solver_failure():
    # Non-regression test for amg solver failure (issue #13393 on github)
    pytest.importorskip('pyamg')
    seed = 36
    num_nodes = 100
    X = sparse.rand(num_nodes, num_nodes, density=0.1, random_state=seed)
    upper = sparse.triu(X) - sparse.diags(X.diagonal())
    sym_matrix = upper + upper.T
    embedding = spectral_embedding(sym_matrix,
                                   n_components=10,
                                   eigen_solver='amg',
                                   random_state=0)

    # Check that the learned embedding is stable w.r.t. random solver init:
    for i in range(3):
        new_embedding = spectral_embedding(sym_matrix,
                                           n_components=10,
                                           eigen_solver='amg',
                                           random_state=i + 1)
        _assert_equal_with_sign_flipping(embedding, new_embedding, tol=0.05)


@pytest.mark.filterwarnings("ignore:the behavior of nmi will "
                            "change in version 0.22")
def test_pipeline_spectral_clustering(seed=36):
    # Test using pipeline to do spectral clustering
    random_state = np.random.RandomState(seed)
    se_rbf = SpectralEmbedding(n_components=n_clusters,
                               affinity="rbf",
                               random_state=random_state)
    se_knn = SpectralEmbedding(n_components=n_clusters,
                               affinity="nearest_neighbors",
                               n_neighbors=5,
                               random_state=random_state)
    for se in [se_rbf, se_knn]:
        km = KMeans(n_clusters=n_clusters, random_state=random_state)
        km.fit(se.fit_transform(S))
        assert_array_almost_equal(
            normalized_mutual_info_score(
                km.labels_,
                true_labels), 1.0, 2)


def test_spectral_embedding_unknown_eigensolver(seed=36):
    # Test that SpectralClustering fails with an unknown eigensolver
    se = SpectralEmbedding(n_components=1, affinity="precomputed",
                           random_state=np.random.RandomState(seed),
                           eigen_solver="<unknown>")
    with pytest.raises(ValueError):
        se.fit(S)


def test_spectral_embedding_unknown_affinity(seed=36):
    # Test that SpectralClustering fails with an unknown affinity type
    se = SpectralEmbedding(n_components=1, affinity="<unknown>",
                           random_state=np.random.RandomState(seed))
    with pytest.raises(ValueError):
        se.fit(S)


def test_connectivity(seed=36):
    # Test that graph connectivity test works as expected
    graph = np.array([[1, 0, 0, 0, 0],
                      [0, 1, 1, 0, 0],
                      [0, 1, 1, 1, 0],
                      [0, 0, 1, 1, 1],
                      [0, 0, 0, 1, 1]])
    assert not _graph_is_connected(graph)
    assert not _graph_is_connected(sparse.csr_matrix(graph))
    assert not _graph_is_connected(sparse.csc_matrix(graph))
    graph = np.array([[1, 1, 0, 0, 0],
                      [1, 1, 1, 0, 0],
                      [0, 1, 1, 1, 0],
                      [0, 0, 1, 1, 1],
                      [0, 0, 0, 1, 1]])
    assert _graph_is_connected(graph)
    assert _graph_is_connected(sparse.csr_matrix(graph))
    assert _graph_is_connected(sparse.csc_matrix(graph))


def test_spectral_embedding_deterministic():
    # Test that Spectral Embedding is deterministic
    random_state = np.random.RandomState(36)
    data = random_state.randn(10, 30)
    sims = rbf_kernel(data)
    embedding_1 = spectral_embedding(sims)
    embedding_2 = spectral_embedding(sims)
    assert_array_almost_equal(embedding_1, embedding_2)


def test_spectral_embedding_unnormalized():
    # Test that spectral_embedding is also processing unnormalized laplacian
    # correctly
    random_state = np.random.RandomState(36)
    data = random_state.randn(10, 30)
    sims = rbf_kernel(data)
    n_components = 8
    embedding_1 = spectral_embedding(sims,
                                     norm_laplacian=False,
                                     n_components=n_components,
                                     drop_first=False)

    # Verify using manual computation with dense eigh
    laplacian, dd = csgraph.laplacian(sims, normed=False,
                                      return_diag=True)
    _, diffusion_map = eigh(laplacian)
    embedding_2 = diffusion_map.T[:n_components]
    embedding_2 = _deterministic_vector_sign_flip(embedding_2).T

    assert_array_almost_equal(embedding_1, embedding_2)


def test_spectral_embedding_first_eigen_vector():
    # Test that the first eigenvector of spectral_embedding
    # is constant and that the second is not (for a connected graph)
    random_state = np.random.RandomState(36)
    data = random_state.randn(10, 30)
    sims = rbf_kernel(data)
    n_components = 2

    for seed in range(10):
        embedding = spectral_embedding(sims,
                                       norm_laplacian=False,
                                       n_components=n_components,
                                       drop_first=False,
                                       random_state=seed)

        assert np.std(embedding[:, 0]) == pytest.approx(0)
        assert np.std(embedding[:, 1]) > 1e-3