Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torch   python

Repository URL to install this package:

Version: 2.0.1+cpu 

/ _dynamo / utils.py

import collections
import contextlib
import copy
import cProfile
import dataclasses
import datetime
import dis
import enum
import functools
import gc
import inspect
import itertools
import logging.config
import math
import operator
import os
import pstats
import re
import sys
import time
import types
import typing
import weakref
from contextlib import contextmanager
from functools import lru_cache, wraps
from typing import Any, Dict, List

try:
    import numpy as np

    HAS_NUMPY = True
except ModuleNotFoundError:
    np = None  # type: ignore[assignment]
    HAS_NUMPY = False

import importlib

import torch
import torch.fx.experimental.symbolic_shapes
from torch import fx
from torch._dispatch.python import enable_python_dispatcher
from torch._subclasses.fake_tensor import FakeTensor
from torch.nn.modules.lazy import LazyModuleMixin
from torch.utils._pytree import tree_flatten, tree_map

from . import config, logging as torchdynamo_logging

counters = collections.defaultdict(collections.Counter)
troubleshooting_url = "https://pytorch.org/docs/master/dynamo/troubleshooting.html"

log = logging.getLogger(__name__)

# profiling compilation time
compilation_metrics = collections.OrderedDict()

timer_counter = itertools.count()


def tabulate(rows, headers):
    try:
        import tabulate

        return tabulate.tabulate(rows, headers=headers)
    except ImportError:
        return "\n".join(
            ", ".join(map(str, row)) for row in itertools.chain([headers], rows)
        )


def dynamo_profiled(func):
    @wraps(func)
    def profile_wrapper(*args, **kwargs):
        global timer_counter
        datafn = (
            func.__name__ + f"{next(timer_counter)}.profile"
        )  # Name the data file sensibly
        prof = cProfile.Profile()
        prof.enable()
        retval = prof.runcall(func, *args, **kwargs)
        prof.disable()
        print(f"### Cprofile for {func.__name__} iter {next(timer_counter)} ###")
        ps = pstats.Stats(prof)
        ps.sort_stats(pstats.SortKey.TIME).print_stats(20)
        ps.sort_stats(pstats.SortKey.CUMULATIVE).print_stats(20)
        prof.dump_stats(datafn)
        return retval

    return profile_wrapper


frame_phase_timing = collections.OrderedDict()

curr_frame = 0

# Note: Called for you by dynamo - you almost never ever want to invoke this yourself.
def increment_frame():
    global curr_frame
    curr_frame = curr_frame + 1


# Note: Called for you by dynamo - you almost never ever want to invoke this yourself.
def reset_frame_count():
    global curr_frame
    frame_phase_timing.clear()
    curr_frame = 0


op_count = 0


def increment_op_count(cnt):
    global op_count
    op_count += cnt


# Print a report of time spent so far
# Ex:
# TIMING:
# entire_frame_compile:8.574629999999999
# backend_compile:5.26806
def print_time_report():
    total = 0
    total_by_key = {}
    for frame, timings in frame_phase_timing.items():
        for key, timing in timings.items():
            total += timing
            if key not in total_by_key:
                total_by_key[key] = timing
            else:
                total_by_key[key] += timing

    out = "TIMING:"
    for key, value in total_by_key.items():
        out = f"{out} {key}:{round(value, 5)}"

    print(out)


# dynamo_timed API works as a function decorator
# By wrapping a function in dynamo_timed, we can store a record in compilation_metrics
# where the key is the functions name.
# For example:
#
#  @dynamo_timed
#  def _foo(...):
#
# Would show up as an entry in our timing dict:
# OrderedDict([('bar.<locals>._foo', [0.083690, 0.23949, 3.1425e-05])])
# This is extremely useful for granular debugging.
#
# For a higher-level mode, pass a phase_name into dynamo_timed
# phase_names record an extra record into a separate compilation timing structure,
# one keyed on frame+name rather than function.
# The frame is incremented outside of this function, in def increment_frame() above.
def dynamo_timed(original_function=None, phase_name=None):
    def dynamo_timed_inner(func):
        @wraps(func)
        def time_wrapper(*args, **kwargs):
            key = func.__qualname__
            if key not in compilation_metrics:
                compilation_metrics[key] = []
            t0 = time.time()
            r = func(*args, **kwargs)
            time_spent = time.time() - t0
            # print(f"Dynamo timer: key={key}, latency={latency:.2f} sec")
            compilation_metrics[key].append(time_spent)
            if phase_name:
                frame_key = str(curr_frame)
                if frame_key not in frame_phase_timing:
                    frame_phase_timing[frame_key] = {}
                assert (
                    phase_name not in frame_phase_timing[frame_key]
                ), f"Duplicate phase name {phase_name} for frame {frame_key}"
                frame_phase_timing[frame_key][phase_name] = time_spent
            return r

        return time_wrapper

    if original_function:
        return dynamo_timed_inner(original_function)
    return dynamo_timed_inner


def compile_times(repr="str", aggregate=False):
    """
    Get metrics about torchdynamo frontend/backend compilation times.

    Accumulates information from functions tagged with `@dynamo_timed`.

    repr='str' returns a printable string for user interaction, and 'csv'
    returns headers, rows which can be logged for output

    aggregate causes values from multiple compilations (e.g. split graphs)
    to be accumulated into one value.  If false, expect more than one value
    per metric.
    """

    def fmt_fn(values, item_fn=lambda x: x):

        if aggregate:
            return item_fn(sum(values))
        return ", ".join(map(item_fn, values))

    if repr == "str":
        rows = [
            (k, fmt_fn(compilation_metrics[k], item_fn=lambda x: f"{x:.4f}"))
            for k in compilation_metrics
        ]
        out = "TorchDynamo compilation metrics:\n"
        out += tabulate(rows, headers=("Function", "Runtimes (s)"))
        return out
    elif repr == "csv":
        values = [
            fmt_fn(v, item_fn=lambda x: f"{x:.6f}")
            for v in compilation_metrics.values()
        ]
        headers = list(compilation_metrics.keys())
        return headers, values


tensortype_to_dtype = {
    torch.FloatTensor: (torch.float32, torch.float),
    torch.DoubleTensor: (torch.float64, torch.double),
    torch.HalfTensor: (torch.float16, torch.half),
    torch.BFloat16Tensor: (torch.bfloat16,),
    torch.ByteTensor: (torch.uint8,),
    torch.CharTensor: (torch.int8,),
    torch.LongTensor: (torch.int64, torch.long),
    torch.IntTensor: (torch.int32, torch.int),
    torch.ShortTensor: (torch.int16, torch.short),
    torch.BoolTensor: (torch.bool,),
}


class DuplicateWarningChecker:
    def __init__(self, maxsize=4096):
        self.maxsize = maxsize
        self.reset()

    def reset(self):
        self.set = collections.OrderedDict()

    def add(self, key):
        if key in self.set:
            self.set.move_to_end(key, last=True)
            if not config.verbose:
                return False
        else:
            self.set[key] = None
            while len(self.set) > self.maxsize:
                self.set.popitem(last=False)
        return True


graph_break_dup_warning_checker = DuplicateWarningChecker()


def init_logging():
    torchdynamo_logging.init_logging(
        config.log_level, log_file_name=config.log_file_name
    )
    graph_break_dup_warning_checker.reset()


def format_graph_tabular(graph):
    node_specs = [[n.op, n.name, n.target, n.args, n.kwargs] for n in graph.nodes]
    return tabulate(node_specs, headers=["opcode", "name", "target", "args", "kwargs"])


def format_bytecode(prefix, name, filename, line_no, code):
    return f"{prefix} {name} {filename}\
 line {line_no} \n{dis.Bytecode(code).dis()}\n "


def gen_record_file_name(exc, code):
    return f"{get_debug_dir()}/error_recordings/\
{code.co_name}_{type(exc).__name__}_{code.co_firstlineno}.rec"


def write_record_to_file(filename, exec_record):
    try:
        if os.path.exists(filename):
            log.warning(
                f"Unable to write execution record {filename}; file already exists."
            )
        else:
            os.makedirs(os.path.dirname(filename), exist_ok=True)
            with open(filename, "wb") as f:
                exec_record.dump(f)
    except Exception:
        log.error(f"Unable to write execution record {filename}", exc_info=1)


def count_calls(g: fx.Graph):
    c = 0
    for n in g.nodes:
        if "call" in n.op:
            c += 1
    return c


def identity(x):
    return x


def nothing(*args, **kwargs):
    pass


class ExactWeakKeyDictionary:
    """Similar to weakref.WeakKeyDictionary, but use `is`/`id` rather than `==` to compare equality"""

    def __init__(self):
        self.values = dict()
        self.refs = dict()

    def __getitem__(self, key):
        return self.values[id(key)]

    def get(self, key, default=None):
        return self.values.get(id(key), default)

    def __contains__(self, key):
        return id(key) in self.values

    def __setitem__(self, key, value):
        idx = id(key)
        if idx not in self.refs:
            self.refs[idx] = weakref.ref(key, lambda ref: self._remove_id(idx))
        self.values[idx] = value

    def _remove_id(self, idx):
        if idx in self.values:
            del self.values[idx]
        if idx in self.refs:
            del self.refs[idx]

    def clear(self):
        self.refs.clear()
        self.values.clear()


def istype(obj, allowed_types):
    """isinstance() without subclasses"""
    if isinstance(allowed_types, (tuple, list, set)):
        return type(obj) in allowed_types
    return type(obj) is allowed_types


def is_typing(value):
    if sys.version_info < (3, 9):
        return isinstance(value, typing._GenericAlias)
    else:
        return isinstance(value, typing._SpecialGenericAlias)


def is_numpy_int_type(value):
    if HAS_NUMPY:
        return istype(
            value,
            (
                np.int8,
                np.int16,
                np.int32,
                np.int64,
                np.uint8,
                np.uint16,
                np.uint32,
                np.uint64,
            ),
        )
    else:
        return False


def is_numpy_float_type(value):
    if HAS_NUMPY:
        return istype(
            value,
            (
                np.float16,
                np.float32,
                np.float64,
            ),
        )
    else:
        return False


def is_numpy_ndarray(value):
    if HAS_NUMPY:
        return istype(value, np.ndarray)
    else:
        return False


def istensor(obj):
    """Check of obj is a tensor"""
    tensor_list = (
        torch.Tensor,
        torch.nn.Parameter,
        *config.traceable_tensor_subclasses,
    )
    tensor_list = tensor_list + (torch._subclasses.FakeTensor,)
    return istype(obj, tensor_list)


def is_lazy_module(mod):
    return isinstance(mod, LazyModuleMixin)


@functools.lru_cache(4096)
def print_once(*args):
    print(*args)


def make_cell(val=None):
    """Some black magic to create a cell object that usually only exists in a closure"""
    x = val

    def f():
        return x

    assert len(f.__closure__) == 1
    return f.__closure__[0]


def proxy_args_kwargs(args, kwargs):
    try:
        proxy_args = tuple(arg.as_proxy() for arg in args)
        proxy_kwargs = {key: arg.as_proxy() for key, arg in kwargs.items()}
        return proxy_args, proxy_kwargs
    except NotImplementedError as e:
        from .exc import unimplemented
        from .variables.base import typestr

        raise unimplemented(
            f"call_function args: {typestr(*args)} {typestr(*list(kwargs.values()))}"
        ) from e


@dataclasses.dataclass
class CleanupHook:
    """Remove a global variable when hook is called"""

    scope: Dict[str, Any]
    name: str

    def __call__(self, *args):
        CleanupManager.count -= 1
        del self.scope[self.name]

    @staticmethod
    def create(scope, name, val):
        assert name not in scope
        CleanupManager.count += 1
        scope[name] = val
        return CleanupHook(scope, name)


class CleanupManager(ExactWeakKeyDictionary):
    count = 0

    def _remove_id(self, idx):
        for hook in self.values[idx]:
            hook()
        super()._remove_id(idx)


CleanupManager.instance = CleanupManager()


def clone_tensor(x):
    """Clone the tensor and its gradient"""
    y = x.clone().requires_grad_(x.requires_grad)
    if x.is_leaf and x.grad is not None:
        y.grad = x.grad.clone()
    return y


def clone_input(x):
    """copy while preserving strides"""
    # TODO: this is questionable
    if isinstance(x, torch._subclasses.FakeTensor):
        # this func fails on fake tensors in __torch_dispatch__
        return x

    def torch_clone(x):
        y = torch.clone(x)
        if x.is_leaf:
            y.requires_grad_(x.requires_grad)
        if x.is_leaf and x.grad is not None:
            y.grad = clone_input(x.grad)
        return y

    with torch.no_grad():
        if x.device.type == "xla":
            # Access data_ptr() for a xla tensor will cause crash
            return torch_clone(x)

        needed_size = sum(
            (shape - 1) * stride for shape, stride in zip(x.size(), x.stride())
        )
        if x.is_quantized:
            result = torch.empty_quantized((needed_size + 32,), x)
        else:
            result = torch.empty(needed_size + 32, dtype=x.dtype, device=x.device)
        cache_line_offset = (
            (x.data_ptr() - result.data_ptr()) % 32
        ) // x.element_size()
        result.as_strided_(x.size(), x.stride(), cache_line_offset)
        try:
            result.copy_(x.clone())
            if x.is_leaf:
                result.requires_grad_(x.requires_grad)
            if x.is_leaf and x.grad is not None:
                result.grad = clone_input(x.grad)
        except RuntimeError:
            # RuntimeError: unsupported operation: more than one element of the written-to
            # tensor refers to a single memory location. Please clone() the tensor before
            # performing the operation.
            return torch_clone(x)
        return result


def clone_inputs(example_inputs):
    if isinstance(example_inputs, dict):
        res = dict(example_inputs)
        for key, value in res.items():
            assert isinstance(value, torch.Tensor)
            res[key] = clone_input(value)
        return res

    res = list(example_inputs)
    for i in range(len(res)):
        if isinstance(res[i], torch.Tensor):
            res[i] = clone_input(res[i])
    return res


@contextmanager
def preserve_rng_state():
    rng = torch.clone(torch.random.get_rng_state())
    if torch.cuda.is_available():
        cuda_rng = torch.clone(torch.cuda.get_rng_state())
    try:
        yield
    finally:
        torch.random.set_rng_state(rng)
        if torch.cuda.is_available():
            torch.cuda.set_rng_state(cuda_rng)


def is_jit_model(model0):
    return isinstance(
        model0,
        (
            torch.jit._trace.TopLevelTracedModule,
            torch.jit._script.RecursiveScriptModule,
            torch.jit.ScriptFunction,
            torch.jit.ScriptModule,
        ),
    )


def torchscript(model, example_inputs, verbose=False):
    if is_jit_model(model):
        # already done?
        return model

    try:
        return torch.jit.trace(model, example_inputs)
    except Exception:
        try:
            return torch.jit.script(model)
        except Exception:
            if verbose:
                log.exception("jit error")
            else:
                log.error("Both torch.jit.trace and torch.jit.script failed")
    return None


def getfile(obj):
    try:
        return inspect.getfile(obj)
    except TypeError:
        return None


def is_namedtuple(obj):
    """Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple"""
    return is_namedtuple_cls(type(obj))


def is_namedtuple_cls(cls):
    """Test if an object is a namedtuple or a torch.return_types.* quasi-namedtuple"""
    try:
        if issubclass(cls, tuple):
            bases = getattr(cls, "__bases__", []) or [None]
            module = getattr(cls, "__module__", None)
            return module == "torch.return_types" or (
                bases[0] is tuple and hasattr(cls, "_make") and hasattr(cls, "_fields")
            )
    except TypeError:
        pass
    return False


@functools.lru_cache(1)
def namedtuple_fields(cls):
    """Get the fields of a namedtuple or a torch.return_types.* quasi-namedtuple"""
    if cls is slice:
        return ["start", "stop", "step"]

    assert issubclass(cls, tuple)
    if hasattr(cls, "_fields"):
        # normal namedtuples
        return cls._fields

    @dataclasses.dataclass
    class Marker:
        index: int

    # frustrating ones e.g. torch.return_types.max
    assert cls.__module__ == "torch.return_types"
    obj = cls(map(Marker, range(cls.n_fields)))
    fields = [None] * cls.n_fields
    for name in dir(obj):
        if name[0] != "_" and isinstance(getattr(obj, name), Marker):
            fields[getattr(obj, name).index] = name
    return fields


def checkpoint_params(gm):
    with torch.no_grad():
        rng_state = torch.clone(torch.random.get_rng_state())
        if torch.cuda.is_available():
            cuda_rng_state = torch.clone(torch.cuda.get_rng_state())
        saved_state = []
        for param in itertools.chain(gm.parameters(), gm.buffers()):
            saved_state.append((param, param._version, torch.clone(param)))

    def restore():
        with torch.no_grad():
            torch.random.set_rng_state(rng_state)
            if torch.cuda.is_available():
                torch.cuda.set_rng_state(cuda_rng_state)
            for param, version, original_value in saved_state:
                if param._version != version:
                    param.copy_(original_value)

    return restore


def timed(model, example_inputs, times=1):
    if torch.cuda.is_available():
        synchronize = torch.cuda.synchronize
    else:
        synchronize = nothing

    synchronize()
    gc.collect()
    torch.manual_seed(1337)
    t0 = time.perf_counter()
    for _ in range(times):
        result = model(*example_inputs)
        synchronize()
    t1 = time.perf_counter()
    return result, t1 - t0


def check_is_cuda(gm, example_inputs):
    return all(x.is_cuda for x in itertools.chain(example_inputs, gm.parameters(True)))


@lru_cache(32)
def rot_n_helper(n):
    assert n > 1
    vars = [f"v{i}" for i in range(n)]
    rotated = reversed(vars[-1:] + vars[:-1])
    fn = eval(f"lambda {','.join(vars)}: ({','.join(rotated)})")
    fn.__name__ = f"rot_{n}_helper"
    return fn


def is_safe_constant(v):
    if istype(v, (tuple, frozenset)):
        return all(map(is_safe_constant, v))
    return istype(
        v,
        (
            types.CodeType,
            int,
            float,
            bool,
            str,
            bytes,
            type(None),
            slice,
            type(type),
            torch.device,
            torch.dtype,
        ),
    ) or isinstance(v, enum.Enum)


def check_constant_args(args, kwargs):
    return all(x.is_python_constant() for x in itertools.chain(args, kwargs.values()))


def check_unspec_python_args(args, kwargs):
    from .variables.constant import ConstantVariable
    from .variables.tensor import UnspecializedPythonVariable

    unspec_count = 0
    for x in itertools.chain(args, kwargs.values()):
        if isinstance(x, UnspecializedPythonVariable):
            unspec_count += 1
        elif not isinstance(x, (UnspecializedPythonVariable, ConstantVariable)):
            return False
        else:
            pass

    return unspec_count > 0


def specialize_args_kwargs(tx, args, kwargs):
    specialized_args = []
    specialized_kwargs = {}
    for x in args:
        specialized_args.append(x.as_specialized(tx))
    for k, v in kwargs.items():
        specialized_kwargs.update({k: v.as_specialized(tx)})
    return specialized_args, specialized_kwargs


dict_values = type(dict().values())
odict_values = type(collections.OrderedDict().values())
tuple_iterator = type(iter(tuple()))
tuple_iterator_len = tuple_iterator.__length_hint__
object_new = object.__new__


def product(it):
    return functools.reduce(operator.mul, it, 1)


def tuple_iterator_getitem(it, index):
    _, (obj,), start = it.__reduce__()
    return obj[start + index]


def enum_repr(value):
    # Workaround repr(Enum) returning invalid global reference before python 3.11
    # https://peps.python.org/pep-0663/
    if sys.version_info < (3, 11):
        return str(value)
    else:
        return repr(value)


def dict_param_key_ids(value):
    return {id(k) for k in value.keys() if isinstance(k, torch.nn.Parameter)}


def dict_const_keys(value):
    return {k for k in value.keys() if not isinstance(k, torch.nn.Parameter)}


def dict_const_keys_repr(const_keys):
    if any(isinstance(k, enum.Enum) for k in const_keys):
        # To workaround repr(Enum) returning invalid global reference before python 3.11
        # by calling enum_repr and removing quotes to render enum in guard code.
        const_keys_str = f"{ {enum_repr(k) if isinstance(k, enum.Enum) else repr(k) for k in const_keys} }".replace(
            "'", ""
        )
    else:
        const_keys_str = f"{const_keys!r}"
    return const_keys_str


def global_key_name(key):
    return f"__dict_key_{id(key)}"


def rename_implicit(v):
    """
    Usage of inline comprehensions generates a implicit ".0" variable that
    trips up guard generation.  This renames these variables in guards.
    """
    m = re.match(r"^[.](\d+)$", v)
    if m:
        assert v == ".0", f"currently only .0 supported: {v}"
        # to support .1 etc see guards.py and _eval_frame.c
        return f"___implicit{m.group(1)}"
    return v


from torch._subclasses import (  # noqa: F401
    FakeTensorMode,
    UnsupportedFakeTensorException,
)


def wrap_fake_exception(fn):
    try:
        return fn()
    except UnsupportedFakeTensorException as e:
        from .exc import unimplemented

        msg = f"Unsupported: {e.reason} with fake tensor propagation."
        log.warning(msg)
        raise unimplemented(msg) from e


def deepcopy_to_fake_tensor(obj, fake_mode):
    with torch._subclasses.fake_tensor.FakeCopyMode(fake_mode):
        return wrap_fake_exception(lambda: copy.deepcopy(obj))


def rmse(ref, res):
    """
    Calculate root mean squared error
    """
    return torch.sqrt(torch.mean(torch.square(ref - res)))


def same(
    ref,
    res,
    fp64_ref=None,
    cos_similarity=False,
    tol=1e-4,
    equal_nan=False,
    exact_dtype=True,
    relax_numpy_equality=False,
):
    """Check correctness to see if ref and res match"""
    if fp64_ref is None:
        fp64_ref = ref
    if isinstance(ref, (list, tuple, torch.nn.ParameterList, torch.Size)):
        assert isinstance(res, (list, tuple)), f"type mismatch {type(ref)} {type(res)}"
        return len(ref) == len(res) and all(
            same(
                ai,
                bi,
                fp64_refi,
                cos_similarity,
                tol,
                equal_nan,
                exact_dtype,
                relax_numpy_equality,
            )
            for ai, bi, fp64_refi in zip(ref, res, fp64_ref)
        )
    elif isinstance(ref, dict):
        assert isinstance(res, dict)
        assert set(ref.keys()) == set(
            res.keys()
        ), f"keys mismatch {set(ref.keys())} == {set(res.keys())}"
        for k in ref.keys():
            if not (
                same(
                    ref[k],
                    res[k],
                    fp64_ref[k],
                    cos_similarity=cos_similarity,
                    tol=tol,
                    equal_nan=equal_nan,
                    exact_dtype=exact_dtype,
                    relax_numpy_equality=relax_numpy_equality,
                )
            ):
                log.error(f"Accuracy failed for key name {k}")
                return False
        return True
    elif isinstance(ref, torch.Tensor):
        assert not isinstance(ref, torch._subclasses.FakeTensor)
        assert not isinstance(res, torch._subclasses.FakeTensor)

        if ref.is_sparse:
            assert res.is_sparse
            ref = ref.to_dense()
            res = res.to_dense()
        assert isinstance(res, torch.Tensor), f"type mismatch {type(ref)} {type(res)}"
        if exact_dtype:
            if ref.dtype != res.dtype:
                log.error(f"dtype mismatch {ref.dtype}, {res.dtype}")
                return False
            if ref.dtype == torch.bool:
                # triton stores bool as int8, so add this for more accurate checking
                r = torch.allclose(
                    ref.to(dtype=torch.uint8),
                    res.to(dtype=torch.uint8),
                    atol=tol,
                    rtol=tol,
                    equal_nan=equal_nan,
                )
                if not r:
                    log.error("Accuracy failed: uint8 tensor did not match")
                return r
        if cos_similarity:
            ref = ref.flatten().to(torch.float32)
            res = res.flatten().to(torch.float32)
            if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=True):
                # early exit that handles zero/nan better
                # cosine_similarity(zeros(10), zeros(10), dim=0) is 0
                return True
            score = torch.nn.functional.cosine_similarity(ref, res, dim=0, eps=1e-6)
            if score < 0.99:
                log.warning(f"Similarity score={score.cpu().detach().item()}")
            return score >= 0.99
        else:
            if not exact_dtype:
                ref = ref.to(res.dtype)

            # First try usual allclose
            if torch.allclose(ref, res, atol=tol, rtol=tol, equal_nan=equal_nan):
                return True

            # Check error from fp64 version
            if fp64_ref.dtype == torch.float64:
                ref_error = rmse(fp64_ref, ref).item()
                res_error = rmse(fp64_ref, res).item()
                multiplier = 2.0

                if (
                    fp64_ref.numel() < 1000
                    or (ref.ndim == 4 and ref.shape[-1] == ref.shape[-2] == 1)
                    # large tol means a benchmark has been specified as REQUIRE_HIGHER_TOLERANCE
                    or tol >= 2 * 1e-2
                ):
                    # In the presence of noise, noise might dominate our error
                    # metric for smaller tensors.
                    # Similary, for 1x1 kenerls, there seems to be high noise with amp.
                    multiplier = 3.0

                passes_test = res_error <= (multiplier * ref_error + tol / 10.0)
                if not passes_test:
                    log.error(
                        f"RMSE (res-fp64): {res_error:.5f}, (ref-fp64): {ref_error:.5f} and shape={res.size()}"
                    )
                    # import pdb; pdb.set_trace()
                return passes_test

            log.error(f"Accuracy failed: allclose not within tol={tol}")
            return False
    elif isinstance(ref, (str, int, type(None), bool, torch.device)):
        r = ref == res
        if not r:
            log.error(f"Accuracy failed ({type(ref)}): {ref} != {res}")
        return r
    elif isinstance(ref, float):
        r = math.isclose(ref, res, rel_tol=tol, abs_tol=tol)
        if not r:
            log.error("Accuracy failed (float): {ref} != {res} (within tol={tol})")
        return r
    elif is_numpy_int_type(ref) or is_numpy_float_type(ref):
        if relax_numpy_equality:
            ref = ref.item()
        r = (type(ref) is type(res)) and (ref == res)
        if not r:
            log.error("Accuracy failed (numpy): {ref} != {res}")
        return r
    elif is_numpy_ndarray(ref):
        return (type(ref) is type(res)) and (ref == res).all()
    elif type(ref).__name__ in (
        "MaskedLMOutput",
        "Seq2SeqLMOutput",
        "CausalLMOutputWithCrossAttentions",
        "LongformerMaskedLMOutput",
        "Instances",
        "SquashedNormal",
        "Boxes",
        "Normal",
        "TanhTransform",
        "Foo",
        "Variable",
    ):
        assert type(ref) is type(res)
        return all(
            same(
                getattr(ref, key),
                getattr(res, key),
                getattr(fp64_ref, key),
                cos_similarity=cos_similarity,
                tol=tol,
                equal_nan=equal_nan,
                exact_dtype=exact_dtype,
                relax_numpy_equality=relax_numpy_equality,
            )
            for key in ref.__dict__.keys()
        )
    else:
        raise RuntimeError(f"unsupported type: {type(ref).__name__}")


def format_func_info(code):
    short_filename = code.co_filename.split("/")[-1]
    return f"'{code.co_name}' ({short_filename}:{code.co_firstlineno})"


@contextlib.contextmanager
def disable_cache_limit():
    prior = config.cache_size_limit
    config.cache_size_limit = sys.maxsize

    try:
        yield
    finally:
        pass
        config.cache_size_limit = prior


# map from transformed code back to original user code
orig_code_map = ExactWeakKeyDictionary()

# keep a record of code_obj -> list of guard failure reasons for logging
guard_failures = collections.defaultdict(list)


class CompileProfiler:
    """Utility for profiling how and what dynamo would compile.

    Can be used for
     * diagnosing recompilation issues
     * determining an appropriate compile cache limit
     * (TODO)confirming which functions got compiled/skipped
    """

    def __init__(self):
        self.frame_count = 0
        self.op_count = 0
        self.backend_ctx_ctor = lambda: disable_cache_limit()

    def __call__(self, gm: torch.fx.GraphModule, example_inputs):
        self.frame_count += 1
        for node in gm.graph.nodes:
            if "call" in node.op:
                self.op_count += 1
        return gm.forward

    def get_metrics(self):
        return {"guard_failures": guard_failures}

    def report(self):
        metrics = self.get_metrics()
        gf = metrics["guard_failures"]

        def num_recompiles(code):
            return len(gf[code])

        def recompile_reasons(code):
            return "\n".join([str(x) for x in gf[code]])

        summarized_gf = [
            [format_func_info(code), num_recompiles(code), recompile_reasons(code)]
            for code in gf
        ]
        rpt = "Torchdynamo Profiler Report\n"
        if "graph_break" in counters:
            rpt += "\n"
            rpt += "The following conditions caused torchdynamo to break out of tracing and fall back to python.\n"
            rpt += (
                "You may gain additional insight by passing `nopython=True` to torch._dynamo.optimize, "
                "to break on the first condition.\n"
            )
            graph_breaks = counters["graph_break"]
            rpt += tabulate(
                [[msg, graph_breaks[msg]] for msg in graph_breaks],
                headers=["Graph Break Reason", "Count"],
            )

        if len(gf):
            max_recompiles = max([num_recompiles(code) for code in gf])
            rpt += "\n"
            rpt += (
                "These subgraphs were recompiled more than once due to guard failures."
            )
            rpt += (
                "Guard failures indicate some condition assumed to be static by the tracer changed, "
                "making it unsafe to reuse the compiled program."
            )
            rpt += tabulate(
                summarized_gf,
                headers=["Function", "Num Recompiles", "Recompile Reasons"],
            )
            rpt += "\n"
            rpt += (
                f"Set torch._dynamo.config.cache_size_limit to "
                f"{max_recompiles} to avoid being cache limited.\n"
            )
        else:
            rpt += "No cache-limited recompilations detected.\n"

        return rpt


# return same dir unless user changes config between calls
@functools.lru_cache(None)
def _get_debug_dir(root_dir):
    dir_name = (
        "run_"
        + datetime.datetime.now().strftime("%Y_%m_%d_%H_%M_%S_%f")
        # use pid to avoid conflicts among ranks
        + "-pid_"
        + str(os.getpid())
    )
    return os.path.join(root_dir, dir_name)


def get_debug_dir():
    debug_root = config.debug_dir_root
    return _get_debug_dir(debug_root)


def get_fake_value(node, tx):
    """
    Run the computation represented by `node` using fake tensors and return the result.
    """
    from .exc import TorchRuntimeError, unimplemented, Unsupported

    op = node.op

    def fake_wrapper(e):
        if isinstance(e, torch.Tensor):
            assert isinstance(e, FakeTensor)
        return e

    def visit(n: torch.fx.Node):
        return n.meta["example_value"]

    args, kwargs = torch.fx.node.map_arg((node.args, node.kwargs), visit)
    args = tree_map(fake_wrapper, args)
    kwargs = tree_map(fake_wrapper, kwargs)

    nnmodule = None
    if op == "call_module":
        nnmodule = tx.output.nn_modules[node.target]

        if not is_lazy_module(nnmodule):
            nnmodule = deepcopy_to_fake_tensor(nnmodule, tx.fake_mode)

    if op == "call_module" and is_lazy_module(nnmodule):
        assert nnmodule is not None
        # In the case of a lazy module, we want to run
        # the pre-hooks which initialize it
        nnmodule(*args, **kwargs)
    try:
        with tx.fake_mode, enable_python_dispatcher():
            return wrap_fake_exception(
                lambda: run_node(tx.output, node, args, kwargs, nnmodule)
            )
    except Unsupported:
        raise
    except RuntimeError as e:
        cause = e
        if e.__cause__ is not None:
            cause = e.__cause__
        if isinstance(
            cause, torch._subclasses.fake_tensor.DataDependentOutputException
        ):
            unimplemented(f"data dependent operator: {cause.func}")
        elif isinstance(
            cause, torch._subclasses.fake_tensor.DynamicOutputShapeException
        ):
            unimplemented(f"dynamic shape operator: {cause.func}")
        elif isinstance(
            cause, torch.fx.experimental.symbolic_shapes.GuardOnDataDependentSymNode
        ):
            unimplemented("guard on data-dependent symbolic int/float")
        raise TorchRuntimeError() from e


def run_node(output_graph, node, args, kwargs, nnmodule):
    """
    Runs a given node, with the given args and kwargs.

    Behavior is dicatated by a node's op.

    run_node is useful for extracting real values out of nodes.
    See get_real_value for more info on common usage.

    Note: The output_graph arg is only used for 'get_attr' ops
    Note: The nnmodule arg is only used for 'call_module' ops

    Nodes that are not call_function, call_method, call_module, or get_attr will
    raise an AssertionError.
    """
    op = node.op
    try:
        if op == "call_function":
            return node.target(*args, **kwargs)
        elif op == "call_method":
            return getattr(args[0], node.target)(*args[1:], **kwargs)
        elif op == "call_module":
            assert nnmodule is not None
            return nnmodule(*args, **kwargs)
        elif op == "get_attr":
            return output_graph.get_submodule(node.target)
        elif op == "placeholder":
            assert "example_value" in node.meta
            return node.meta["example_value"]
    except Exception as e:
        raise RuntimeError(
            f"Failed running {op} {node.target}(*{args}, **{kwargs}):\n{e}\n(scroll up for backtrace)"
        ) from e
    raise AssertionError(op)


def get_real_value(node, output_graph):
    """
    Run the actual computation represented by `node` and return the result.
    This will execute any dependent nodes in the graph as well.
    """
    cache = output_graph.real_value_cache
    if node in cache:
        return cache[node]

    op = node.op
    args, kwargs = torch.fx.node.map_arg(
        (node.args, node.kwargs),
        lambda n: get_real_value(n, output_graph),
    )

    if op == "call_module":
        nn_module = output_graph.nn_modules[node.target]
        if not is_lazy_module(nn_module):
            nn_module = copy.deepcopy(nn_module)
        else:
            # In the case of a lazy module, we want to run
            # the pre-hooks which initialize it
            nn_module(*args, **kwargs)
    else:
        nn_module = None

    try:
        real_value = run_node(output_graph, node, args, kwargs, nn_module)
        cache[node] = real_value
    except RuntimeError as e:
        raise TorchRuntimeError() from e
    return real_value


def assert_no_fake_params_or_buffers(gm):
    from torch._subclasses.fake_tensor import FakeTensorConfig

    def stack_or_hint(t):
        if FakeTensorConfig.debug:
            import traceback

            return f"FAKE TENSOR CREATION TRACEBACK: \n {traceback.format_list(t._debug_trace)}"
        else:
            return "Enable TORCH_FAKE_TENSOR_DEBUG=1 to get creation stack traces on fake tensors."

    for name, buffer in gm.named_buffers():
        assert not isinstance(
            buffer, torch._subclasses.FakeTensor
        ), f"Unexpected fake buffer {name} {stack_or_hint(buffer)}"
    for name, param in gm.named_parameters():
        assert not isinstance(
            param, torch._subclasses.FakeTensor
        ), f"Unexpected fake param {name} {stack_or_hint(param)}"


def fake_mode_from_tensors(inputs: List[Any]):
    """
    Takes a list of anything, unflattened is fine, returns a fake_mode
    if any are fake. All fake modes on all fake tensors must be identical.
    Returns None if no fake_mode is fine
    """
    flat_inputs, _ = tree_flatten(inputs)
    fake_mode = None
    for flat_input in flat_inputs:
        if isinstance(flat_input, torch._subclasses.FakeTensor):
            if fake_mode is None:
                fake_mode = flat_input.fake_mode
            else:
                assert fake_mode is flat_input.fake_mode
    return fake_mode


def fqn(obj: Any):
    """
    Returns the fully qualified name of the object.
    """
    return f"{obj.__module__}.{obj.__qualname__}"


def ifdyn(count1, count2):
    if torch._dynamo.config.dynamic_shapes:
        return count1
    else:
        return count2


def import_submodule(mod: types.ModuleType):
    """
    Ensure all the files in a given submodule are imported
    """
    for filename in sorted(os.listdir(os.path.dirname(mod.__file__))):
        if filename.endswith(".py") and filename[0] != "_":
            importlib.import_module(f"{mod.__name__}.{filename[:-3]}")