import contextlib
import dataclasses
import functools
import math
import sys
from copy import copy, deepcopy
from pathlib import Path
from typing import ClassVar, Dict, List
import numpy
import sympy
import torch
import torch.fx
from torch._prims_common import is_float_dtype
from .. import codecache, config, ir, metrics
from ..codegen.wrapper import WrapperCodeGen
from ..utils import cache_on_self, sympy_product, sympy_subs, sympy_symbol
from ..virtualized import ops, V
from .common import (
BracesBuffer,
CppWrapperKernelArgs,
CSEVariable,
DeferredIndentedBuffer,
ExprPrinter,
IndentedBuffer,
Kernel,
KernelArgs,
OpOverrides,
)
DTYPE_TO_CPP = {
torch.float32: "float",
torch.float64: "double",
torch.float16: "half",
torch.int64: "long",
torch.int32: "int",
torch.int16: "short",
torch.int8: "signed char",
torch.uint8: "unsigned char",
torch.bool: "bool",
torch.bfloat16: "bfloat16",
}
DTYPE_TO_ATEN = {
torch.float32: "at::ScalarType::Float",
torch.float64: "at::ScalarType::Double",
torch.float16: "at::ScalarType::Half",
torch.int64: "at::ScalarType::Long",
torch.int32: "at::ScalarType::Int",
torch.int16: "at::ScalarType::Short",
torch.int8: "at::ScalarType::Char",
torch.uint8: "at::ScalarType::Byte",
torch.bool: "at::ScalarType::Bool",
torch.bfloat16: "at::ScalarType::BFloat16",
}
INDEX_TYPE = "long"
RTYPE_TO_CPP = {
"sum": "+",
"min": "min",
"max": "max",
"argmin": "argmin",
"argmax": "argmax",
"any": "||",
}
def reduction_init(reduction_type, dtype):
if reduction_type in ("sum", "any"):
return 0
if reduction_type in {"max", "argmax"}:
return (
f"-std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::infinity()"
if is_float_dtype(dtype)
else f"std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::min()"
)
if reduction_type in {"min", "argmin"}:
return (
f"std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::infinity()"
if is_float_dtype(dtype)
else f"std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::max()"
)
raise AssertionError(reduction_type)
def reduction_combine(reduction_type, var, next_value):
if reduction_type == "sum":
return f"{var} += {next_value}"
if reduction_type == "any":
return f"{var} = {var} || {next_value}"
return f"{var} = std::{reduction_type}({var}, {next_value})"
def reduction_combine_vec(reduction_type, var, next_value):
if reduction_type == "max":
return f"{var} = at::vec::maximum({var}, {next_value})"
elif reduction_type == "min":
return f"{var} = at::vec::minimum({var}, {next_value})"
elif reduction_type == "sum":
return f"{var} += {next_value}"
else:
raise NotImplementedError()
index_value_name_counter = 1
def argmax_argmin_prefix(reduction_type, src_dtype, tmpvar):
global index_value_name_counter
struct_name = f"IndexValue_{index_value_name_counter}"
index_value_name_counter += 1
# A small annoyance, due to it being a little cumbersome to just throw {} into strings
prefix = [
f"struct {struct_name} {{size_t index; {DTYPE_TO_CPP[src_dtype]} value;}};",
f"{struct_name} {tmpvar}{{0, {reduction_init(reduction_type, src_dtype)}}};",
]
if reduction_type == "argmax":
prefix.extend(
[
f"#pragma omp declare reduction(argmax : struct {struct_name} :\\",
" omp_out.value = omp_in.value < omp_out.value ? omp_out.value : omp_in.value,\\",
" omp_out.index = omp_in.value < omp_out.value ? omp_out.index : omp_in.index)\\",
f"\tinitializer(omp_priv = {{0, {reduction_init(reduction_type, src_dtype)}}})",
]
)
elif reduction_type == "argmin":
prefix.extend(
[
f"#pragma omp declare reduction(argmin : struct {struct_name} :\\",
" omp_out.value = omp_in.value > omp_out.value ? omp_out.value : omp_in.value,\\",
" omp_out.index = omp_in.value > omp_out.value ? omp_out.index : omp_in.index)\\",
f"\tinitializer(omp_priv = {{0, {reduction_init(reduction_type, src_dtype)}}})",
]
)
return prefix
def float16_reduction_prefix(rtype):
# TODO: This user-defined reduction uses float16 accumulation for sum. To reduce numerical
# errors, float32 accumulation should be used instead.
assert rtype in (
"sum",
"any",
), f"float16 user-defined reduction only supports 'sum' and 'any' but got {rtype}"
prefix = [
f"#pragma omp declare reduction({RTYPE_TO_CPP[rtype]}:{DTYPE_TO_CPP[torch.float16]}:"
+ f"omp_out = omp_out {RTYPE_TO_CPP[rtype]} omp_in)"
]
return prefix
def parallel_num_threads():
threads = config.cpp.threads
if threads < 1:
threads = torch.get_num_threads()
return threads
@functools.lru_cache()
def cpp_prefix():
path = Path(__file__).parent / "cpp_prefix.h"
with path.open() as f:
_, filename = codecache.write(
f.read(),
"h",
)
return f'#include "{filename}"'
class CppPrinter(ExprPrinter):
def _print_ModularIndexing(self, expr):
x, div, mod = expr.args
x = self.paren(self.doprint(x))
div = self.paren(self.doprint(div))
mod = self.paren(self.doprint(mod))
if div != "1":
x = f"({x} / {div})"
return f"{x} % {mod}"
def _print_FloorDiv(self, expr):
x, div = expr.args
x = self.paren(self.doprint(x))
div = self.paren(self.doprint(div))
return f"({x} / {div})"
cexpr = CppPrinter().doprint
@dataclasses.dataclass
class OptimizationContext:
key: ClassVar[str] = "opt_ctx"
# Masked load
is_masked_load: bool = False
# Load value as mask
is_load_as_mask: bool = False
dtype: torch.dtype = torch.float
ops_name: str = ""
is_most_inner_loop_irrevelant: bool = False
class RecordOptimizationContext:
def __init__(self, func_name: str = ""):
self.func_name = func_name
self.current_node: torch.fx.Node = None
self.opt_ctx: OptimizationContext = None
def __enter__(self):
assert V.interpreter
assert V.interpreter.current_node
self.current_node: torch.fx.Node = V.interpreter.current_node
if OptimizationContext.key in self.current_node.meta:
self.opt_ctx = self.current_node.meta[OptimizationContext.key]
else:
self.opt_ctx = OptimizationContext()
self.opt_ctx.ops_name = self.func_name
return self
def __exit__(self, exc_type, exc_val, exc_tb):
assert self.current_node
assert self.opt_ctx
self.current_node.meta[OptimizationContext.key] = self.opt_ctx
def get_opt_ctx(self):
return self.opt_ctx
def get_fx_node(self):
assert self.current_node
return self.current_node
def get_current_node_opt_ctx() -> OptimizationContext:
assert V.interpreter.current_node
if OptimizationContext.key in V.interpreter.current_node.meta:
return V.interpreter.current_node.meta[OptimizationContext.key]
else:
return None
class CppVecOverrides(OpOverrides):
"""Map element-wise ops to aten vectorization C++"""
@staticmethod
def add(a, b):
return f"{a} + {b}"
@staticmethod
def sub(a, b):
return f"{a} - {b}"
@staticmethod
def mul(a, b):
return f"{a} * {b}"
@staticmethod
def div(a, b):
return f"{a} / {b}"
@staticmethod
def abs(x):
return f"{x}.abs()"
@staticmethod
def sin(x):
return f"{x}.sin()"
@staticmethod
def cos(x):
return f"{x}.cos()"
@staticmethod
def exp(x):
return f"{x}.exp()"
@staticmethod
def exp2(x):
return f"{x}.exp2()"
@staticmethod
def expm1(x):
# decompose for a better performance
vec_one = f"decltype({x})(1)"
return f"{x}.exp() - {vec_one}"
@staticmethod
def erf(x):
return f"{x}.erf()"
@staticmethod
def sqrt(x):
return f"{x}.sqrt()"
@staticmethod
def eq(x, y):
return f"{x} == {y}"
@staticmethod
def ne(x, y):
return f"{x} != {y}"
@staticmethod
def lt(x, y):
return f"{x} < {y}"
@staticmethod
def gt(x, y):
return f"{x} > {y}"
@staticmethod
def le(x, y):
return f"{x} <= {y}"
@staticmethod
def ge(x, y):
return f"{x} >= {y}"
@staticmethod
def and_(x, y):
return f"{x} & {y}"
@staticmethod
def rsqrt(x):
return f"{x}.rsqrt()"
@staticmethod
def pow(a, b):
return f"{a}.pow({b})"
@staticmethod
def log(x):
return f"{x}.log()"
@staticmethod
def round(x):
return f"{x}.round()"
@staticmethod
def floor(x):
return f"{x}.floor()"
@staticmethod
def ceil(x):
return f"{x}.ceil()"
@staticmethod
def trunc(x):
return f"{x}.trunc()"
@staticmethod
def fmod(a, b):
return f"{a}.fmod({b})"
@staticmethod
def lgamma(x):
return f"{x}.lgamma()"
"""
#TODO: support logical_and and logical_or vectorization
@staticmethod
def logical_and(a, b):
return f"{a} && {b}"
@staticmethod
def logical_or(a, b):
return f"{a} || {b}"
"""
@staticmethod
def tan(a):
return f"{a}.tan()"
@staticmethod
def tanh(a):
vec_one = f"decltype({a})(1)"
vec_two = f"decltype({a})(2)"
vec_minus_two = f"decltype({a})(-2)"
return f"{vec_two} / ({vec_one} + ({vec_minus_two} * {a}).exp()) - {vec_one}"
@staticmethod
def reciprocal(a):
return f"{a}.reciprocal()"
@staticmethod
def atan(x):
return f"{x}.atan()"
@staticmethod
def acos(x):
return f"{x}.acos()"
@staticmethod
def asin(x):
return f"{x}.asin()"
@staticmethod
def log10(x):
return f"{x}.log10()"
@staticmethod
def erfc(x):
return f"{x}.erfc()"
@staticmethod
def nextafter(x):
return f"{x}.nextafter()"
@staticmethod
def copysign(a, b):
return f"{a}.copysign({b})"
@staticmethod
def atan2(a, b):
return f"{a}.atan2({b})"
@staticmethod
def hypot(a, b):
return f"{a}.hypot({b})"
@staticmethod
def atanh(x):
# For real x, atanh(x) = 1/2 * log((1+x)/(1-x))
vec_one = f"decltype({x})(1)"
vec_one_half = f"decltype({x})(0.5)"
return f"{vec_one_half} * (({vec_one} + {x})/({vec_one} - {x})).log()"
@staticmethod
def asinh(x):
# For real x, asinh(x) = log(x + sqrt(1 + x**2))
vec_one = f"decltype({x})(1)"
return f"({x} + ({vec_one} + {x}*{x}).sqrt()).log()"
@staticmethod
def acosh(x):
# For real x, acosh(x) = log(x + sqrt(x**2 -1))
vec_one = f"decltype({x})(1)"
return f"({x} + ({x}*{x} - {vec_one}).sqrt()).log()"
@staticmethod
def constant(val, dtype):
opt_ctx: OptimizationContext = get_current_node_opt_ctx()
assert opt_ctx
assert opt_ctx.dtype in [torch.int32, torch.float32]
proposed_dtype = opt_ctx.dtype
if val == float("inf"):
assert proposed_dtype == torch.float
quote = f"std::numeric_limits<{DTYPE_TO_CPP[proposed_dtype]}>::infinity()"
elif val == float("-inf"):
assert proposed_dtype == torch.float
quote = f"-std::numeric_limits<{DTYPE_TO_CPP[proposed_dtype]}>::infinity()"
elif math.isnan(val):
quote = f"std::numeric_limits<{DTYPE_TO_CPP[proposed_dtype]}>::quiet_NaN()"
elif val is True or val is False:
quote = f"static_cast<{DTYPE_TO_CPP[proposed_dtype]}>({str(val).lower()})"
else:
quote = f"static_cast<{DTYPE_TO_CPP[proposed_dtype]}>({repr(val)})"
return f"at::vec::Vectorized<{DTYPE_TO_CPP[proposed_dtype]}>({quote})"
@staticmethod
def relu(x):
return f"at::vec::clamp_min({x}, decltype({x})(0))"
@staticmethod
def sigmoid(x):
return f"decltype({x})(1)/(decltype({x})(1) + {x}.neg().exp())"
@staticmethod
def neg(x):
return f"{x}.neg()"
@staticmethod
def floordiv(a, b):
# a and b are integer type
_t = f"decltype({a})"
quot = f"{a} / {b}"
rem = f"{a} % {b}"
return f"(({a} < {_t}(0)) != ({b} < {_t}(0)) ? ({rem} != {_t}(0) ? {quot} - {_t}(1) : {quot}) : {quot})"
@staticmethod
def truncdiv(a, b):
# a and b are integer type
return f"{a} / {b}"
@staticmethod
def minimum(a, b):
return f"at::vec::minimum({a}, {b})"
@staticmethod
def maximum(a, b):
return f"at::vec::maximum({a}, {b})"
@staticmethod
def square(a):
return f"{a}.pow(2)"
@staticmethod
def where(a, b, c):
return f"decltype({b})::blendv({c}, {b}, {a})"
@staticmethod
def sign(x):
code = BracesBuffer()
# auto tmp5 = tmp4 < 0 ? -1 : 1;
vec_zero = f"decltype({x})(0)"
vec_one = f"decltype({x})(1)"
blendv = f"decltype({x})::blendv({vec_zero}, {vec_one}, {vec_zero} < {x})"
left = V.kernel.cse.newvar()
code.writeline(f"auto {left} = {blendv};")
# auto tmp6 = tmp4 == 0 ? 0 : tmp5;
blendv = f"decltype({x})::blendv({vec_zero}, {vec_one}, {x} < {vec_zero})"
right = V.kernel.cse.newvar()
code.writeline(f"auto {right} = {blendv};")
result = V.kernel.cse.newvar()
code.writeline(f"auto {result} = {left} - {right};")
V.kernel.compute.splice(code)
return result
@staticmethod
def to_dtype(x, dtype):
assert dtype in [torch.bool], f"{__name__} does not support {dtype}"
return f"({x})"
@staticmethod
def log1p(x):
return f"{x}.log1p()"
@staticmethod
def masked(mask, body, other):
opt_ctx: OptimizationContext = get_current_node_opt_ctx()
assert opt_ctx
assert opt_ctx.is_masked_load
code = BracesBuffer()
var = V.kernel.cse.newvar()
if other == float("-inf"):
code.writeline(
f"auto {var} = at::vec::Vectorized<float>(-std::numeric_limits<float>::infinity());"
)
elif other == float("inf"):
code.writeline(
f"auto {var} = at::vec::Vectorized<float>(std::numeric_limits<float>::infinity());"
)
else:
code.writeline(f"auto {var} = at::vec::Vectorized<float>({other!r});")
with V.kernel.swap_buffers(code), code.indent():
result = body()
zero_val = "at::vec::Vectorized<float>(0)"
float_mask = f"to_float_mask({mask})"
blendv = f"decltype({result})::blendv({var}, {result}, {float_mask} != {zero_val})"
code.writeline(f"{var} = {blendv};")
V.kernel.compute.splice(code)
return var
@staticmethod
def index_expr(expr, dtype):
assert dtype == torch.int64
opt_ctx: OptimizationContext = get_current_node_opt_ctx()
assert opt_ctx
assert opt_ctx.dtype == torch.int32
assert opt_ctx.is_most_inner_loop_irrevelant
return f"at::vec::Vectorized<int>(static_cast<int>({cexpr(V.kernel.rename_indexing(expr))}))"
class CppOverrides(OpOverrides):
"""Map element-wise ops to C++"""
@staticmethod
def to_dtype(x, dtype):
assert dtype in DTYPE_TO_CPP, f"{dtype} missing from {__name__}.DTYPE_TO_CPP"
return f"static_cast<{DTYPE_TO_CPP[dtype]}>({x})"
@staticmethod
def abs(x):
return f"std::abs({x})"
@staticmethod
def sin(x):
return f"std::sin({x})"
@staticmethod
def cos(x):
return f"std::cos({x})"
@staticmethod
def neg(x):
return f"decltype({x})(-{x})"
@staticmethod
def exp(x):
# return f"Sleef_expf_u10({x})"
return f"std::exp({x})"
@staticmethod
def exp2(x):
return f"std::exp2({x})"
@staticmethod
def expm1(x):
return f"std::expm1({x})"
@staticmethod
def erf(x):
return f"std::erf({x})"
@staticmethod
def sqrt(x):
return f"std::sqrt({x})"
@staticmethod
def rsqrt(x):
return f"1 / std::sqrt({x})"
@staticmethod
def log1p(x):
return f"std::log1p({x})"
@staticmethod
def tan(x):
return f"std::tan({x})"
@staticmethod
def tanh(x):
return f"std::tanh({x})"
@staticmethod
def signbit(x):
return f"std::signbit({x})"
@staticmethod
def pow(a, b):
return f"std::pow({a}, {b})"
@staticmethod
def log(x):
return f"std::log({x})"
@staticmethod
def round(x):
return f"std::nearbyint({x})"
@staticmethod
def floor(x):
return f"std::floor({x})"
@staticmethod
def floordiv(a, b):
# a and b are integer type
quot = f"{a} / {b}"
rem = f"{a} % {b}"
return f"(({a} < 0) != ({b} < 0) ? ({rem} != 0 ? {quot} - 1 : {quot}) : {quot})"
@staticmethod
def ceil(x):
return f"std::ceil({x})"
@staticmethod
def trunc(x):
return f"std::trunc({x})"
@staticmethod
def truncdiv(a, b):
# a and b are integer type
return f"{a} / {b}"
@staticmethod
def fmod(a, b):
return f"std::fmod({a}, {b})"
@staticmethod
def isinf(x):
return f"std::isinf({x})"
@staticmethod
def isnan(x):
return f"std::isnan({x})"
@staticmethod
def lgamma(x):
return f"std::lgamma({x})"
@staticmethod
def acos(x):
return f"std::acos({x})"
@staticmethod
def acosh(x):
return f"std::acosh({x})"
@staticmethod
def asin(x):
return f"std::asin({x})"
@staticmethod
def asinh(x):
return f"std::asinh({x})"
@staticmethod
def atan2(x, y):
return f"std::atan2({x}, {y})"
@staticmethod
def atan(x):
return f"std::atan({x})"
@staticmethod
def atanh(x):
return f"std::atanh({x})"
@staticmethod
def copysign(x, y):
return f"std::copysign({x}, {y})"
@staticmethod
def hypot(x, y):
return f"std::hypot({x}, {y})"
@staticmethod
def erfc(x):
return f"std::erfc({x})"
@staticmethod
def log10(x):
return f"std::log10({x})"
@staticmethod
def nextafter(x, y):
return f"std::nextafter({x}, {y})"
@staticmethod
def relu(x):
return f"{x} * ({x}>0)"
@staticmethod
def minimum(a, b):
return f"({b} != {b}) ? {b} : std::min({a}, {b})"
@staticmethod
def maximum(a, b):
return f"({b} != {b}) ? {b} : std::max({a}, {b})"
@staticmethod
def where(a, b, c):
return f"{a} ? {b} : {c}"
@staticmethod
def mod(a, b):
return f"mod({a}, {b})"
@staticmethod
def constant(val, dtype):
if dtype in (torch.float16, torch.bfloat16):
# Since load promotes all half-precision inputs to float, constants
# must be promoted as well
dtype = torch.float32
if val == float("inf"):
return f"std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::infinity()"
elif val == float("-inf"):
return f"-std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::infinity()"
elif math.isnan(val):
return f"std::numeric_limits<{DTYPE_TO_CPP[dtype]}>::quiet_NaN()"
elif val is True or val is False:
return ops.to_dtype(str(val).lower(), dtype)
return ops.to_dtype(repr(val), dtype)
@staticmethod
def index_expr(expr, dtype):
return ops.to_dtype(cexpr(V.kernel.rename_indexing(expr)), dtype)
@staticmethod
def masked(mask, body, other):
code = BracesBuffer()
# Write masked operation into a lambda
body_var = V.kernel.cse.newvar()
code.writeline(f"auto {body_var} = [&]")
with V.kernel.swap_buffers(code), code.indent():
result = body()
code.writeline(f"return {result};")
code.writeline(";")
V.kernel.compute.splice(code)
# Use the lambda's return type as the type of other
type = f"decltype({body_var}())"
if other == float("-inf"):
other_code = f"-std::numeric_limits<{type}>::infinity()"
elif other == float("inf"):
other_code = "std::numeric_limits<{type}>::infinity()"
elif isinstance(other, bool):
other_code = f"static_cast<{type}>({str(other).lower()})"
else:
other_code = f"static_cast<{type}>({repr(other)})"
return f"{mask} ? {body_var}() : {other_code}"
@staticmethod
def logical_and(a, b):
return f"{a} && {b}"
@staticmethod
def logical_or(a, b):
return f"{a} || {b}"
@staticmethod
def rand(seed: sympy.Expr, offset: sympy.Expr, dtype):
return f"static_cast<{DTYPE_TO_CPP[dtype]}>(normalized_rand_cpu({seed}, {offset}));"
@staticmethod
def randn(seed: sympy.Expr, offset: sympy.Expr, dtype):
return f"static_cast<{DTYPE_TO_CPP[dtype]}>(randn_cpu({seed}, {offset}));"
@staticmethod
def sigmoid(x):
return f"decltype({x})(1) / (decltype({x})(1) + std::exp(-{x}))"
@staticmethod
def sign(x):
code = BracesBuffer()
# auto tmp5 = tmp4 < 0 ? -1 : 1;
left = V.kernel.cse.newvar()
right = V.kernel.cse.newvar()
result = V.kernel.cse.newvar()
code.writeline(f"auto {left} = {x} > 0 ? 1 : 0;")
code.writeline(f"auto {right} = {x} < 0 ? 1 : 0;")
code.writeline(f"auto {result} = {left} - {right};")
V.kernel.compute.splice(code)
return result
class CppKernel(Kernel):
overrides = CppOverrides
sexpr = cexpr
newvar_prefix = "auto "
suffix = ";"
def __init__(self, args, num_threads):
super().__init__(args)
self.call_ranges = None
self.ranges = None
self.itervars = None
self.reduction_depth = None
self.reduction_prefix = IndentedBuffer()
self.reduction_suffix = DeferredIndentedBuffer()
self.reduction_var_map = {}
self.preloads = IndentedBuffer()
self.poststores = DeferredIndentedBuffer()
self.num_threads = num_threads # num_threads the kernel specialized for
def scale_index_with_offset(
self, index: sympy.Expr, scale, itervar_idx=-1, offset=0
):
expanded_index = sympy.expand(index)
var = self.itervars[itervar_idx]
replacement = {var: var * scale + offset}
new_index = sympy_subs(expanded_index, replacement)
return new_index
def load(self, name: str, index: sympy.Expr):
var = self.args.input(name)
index = self.rename_indexing(index)
line = f"{var}[{cexpr(index)}]"
if V.graph.get_dtype(name) in (torch.float16, torch.bfloat16):
line = f"static_cast<float>({line})"
return self.cse.generate(self.loads, line)
def store(self, name, index, value, mode=None):
assert "buf" in name
var = self.args.output(name)
index = self.rename_indexing(index)
if mode is None:
line = f"{var}[{cexpr(index)}] = {value};"
elif mode == "atomic_add":
if not config.cpp.dynamic_threads and self.num_threads == 1:
line = f"{var}[{cexpr(index)}] += {value};"
else:
line = f"atomic_add(&{var}[{cexpr(index)}], {value});"
else:
raise NotImplementedError(f"store mode={mode}")
self.stores.writeline(name, line)
def reduction(self, name, dtype, src_dtype, reduction_type, index, value):
argmax_or_argmin = reduction_type in {"argmax", "argmin"}
tmpvar = self.cse.generate(
self.loads, f"reduction {name} {cexpr(index)}", write=False
)
index = self.rename_indexing(index)
self.reduction_var_map[tmpvar] = reduction_type
if argmax_or_argmin:
self.reduction_prefix.writelines(
argmax_argmin_prefix(reduction_type, src_dtype, tmpvar)
)
compare_op = "<" if reduction_type == "argmax" else ">"
self.stores.writelines(
None,
[
f"if ({tmpvar}.value {compare_op} {value}) {{",
f" {tmpvar}.index = {self.itervars[-1]}; {tmpvar}.value = {value};",
"}",
],
)
else:
if dtype == torch.float16:
self.reduction_prefix.writelines(
float16_reduction_prefix(reduction_type)
)
self.reduction_prefix.writeline(
f"{DTYPE_TO_CPP[dtype]} {tmpvar} = {reduction_init(reduction_type, dtype)};"
)
self.stores.writeline(
None, f"{reduction_combine(reduction_type, tmpvar, value)};"
)
if name not in V.graph.removed_buffers:
var = self.args.output(name)
member_name = ".index" if argmax_or_argmin else ""
self.reduction_suffix.writeline(
name, f"{var}[{cexpr(index)}] = {tmpvar}{member_name};"
)
self.cse.store_cache[name] = tmpvar
def set_ranges(self, lengths, reduction_lengths):
if self.call_ranges:
assert self.call_ranges == tuple(lengths) + tuple(
reduction_lengths
), f"{self.call_ranges} == {tuple(lengths)} + {tuple(reduction_lengths)}"
assert self.reduction_depth == len(lengths)
else:
self.call_ranges = tuple(lengths) + tuple(reduction_lengths)
self.ranges = [self.rename_indexing(x) for x in self.call_ranges]
self.itervars = [sympy_symbol(f"i{n}") for n in range(len(self.ranges))]
self.reduction_depth = len(lengths)
return (
self.itervars[: self.reduction_depth],
self.itervars[self.reduction_depth :],
)
def size_hint(self):
return V.graph.sizevars.size_hint(sympy_product(self.call_ranges))
def codegen_loops_impl(self, loop_nest, code, worksharing):
threads = parallel_num_threads()
par_depth = self.decide_parallel_depth(
self.call_ranges[: loop_nest.max_parallel_depth()], threads
)
with contextlib.ExitStack() as stack:
if par_depth:
if loop_nest.is_reduction_only():
# need to close the worksharing scope to define reduction vars outside it
worksharing.close()
else:
worksharing.parallel(threads)
loop_nest.mark_parallel(par_depth)
elif threads > 1:
if worksharing.single():
stack.enter_context(code.indent())
def gen_kernel(kernel):
with contextlib.ExitStack() as stack:
assert kernel
if hasattr(kernel, "codegen_inner_loops"):
code.splice(kernel.preloads)
kernel.codegen_inner_loops(code)
stack.enter_context(code.indent())
code.splice(kernel.loads)
code.splice(kernel.compute)
code.splice(kernel.stores)
if hasattr(kernel, "codegen_inner_loops"):
code.splice(kernel.poststores)
def gen_loops(loops: List[LoopLevel], in_reduction=False):
with contextlib.ExitStack() as stack_outer:
if loops:
loop = loops[0]
if loop.is_reduction() and not in_reduction:
kernels = loop.get_kernels()
assert kernels
# TODO(jgong5): should gen prefix for all kernels.
# currently, Vec kernel generates prefix for both
# vector and scalar kernels.
if kernels[0].reduction_prefix:
stack_outer.enter_context(code.indent())
code.splice(kernels[0].reduction_prefix)
if loop_nest.is_reduction_only() and loop.parallel:
worksharing.parallel(threads)
for loop in loops:
gen_loop(loop, in_reduction)
if loops:
if loop_nest.is_reduction_only() and loop.parallel:
worksharing.close()
for loop in loops:
if loop.is_reduction() and not in_reduction:
kernels = loop.get_kernels()
for kernel in kernels:
code.splice(kernel.reduction_suffix)
def gen_loop(loop: LoopLevel, in_reduction=False):
with contextlib.ExitStack() as stack:
code.writelines(loop.lines())
stack.enter_context(code.indent())
# generate inner loops or loop body
if loop.inner:
gen_loops(loop.inner, loop.is_reduction())
else:
kernels = loop.get_kernels()
assert len(kernels) == 1
gen_kernel(kernels[0])
stack.enter_context(code.indent())
if loop_nest.root:
gen_loops(loop_nest.root)
else:
gen_kernel(loop_nest.kernel)
def codegen_loops(self, code, worksharing):
loop_nest = LoopNestWithSplit.build(self)
self.codegen_loops_impl(loop_nest, code, worksharing)
def decide_parallel_depth(self, ranges, threads):
seq = self.size_hint()
par = 1
depth = 0
for expr in ranges:
hint = V.graph.sizevars.size_hint(expr)
if par >= 2 * threads or par == threads:
break
if seq // threads < config.cpp.min_chunk_size:
# not enough work
break
depth += 1
par *= hint
seq /= hint
# if we assume thread number is dynamic, make sure we
# have at least one parallel scope and let OMP runtime
# to manage the serial vs. parallel.
if config.cpp.dynamic_threads and depth == 0 and len(ranges) > 0:
depth = 1
return depth
@contextlib.contextmanager
def write_to_suffix(self):
prior = (self.loads, self.compute, self.stores, self.cse)
self.loads = IndentedBuffer()
self.compute = IndentedBuffer()
self.stores = DeferredIndentedBuffer()
self.cse = self.cse.clone()
yield
self.reduction_suffix.splice(self.loads)
self.reduction_suffix.splice(self.compute)
self.reduction_suffix.splice(self.stores)
(self.loads, self.compute, self.stores, self.cse) = prior
class CppVecKernel(CppKernel):
overrides = CppVecOverrides
def __init__(self, args, num_threads, tiling_factor=0):
super().__init__(args, num_threads)
assert codecache.pick_vec_isa()
if tiling_factor == 0:
tiling_factor = codecache.pick_vec_isa().nelements()
self.tiling_factor = tiling_factor
self.reduction_omp_dec: Dict[str, str] = {}
self.var_vec_buf_map: Dict[str, str] = {}
metrics.generated_cpp_vec_kernel_count += 1
def stride_at(self, var: sympy.Symbol, index: sympy.Expr):
replacement = {var: var + 1}
new_index = sympy_subs(index, replacement)
return sympy.simplify(new_index - index)
def is_stride1_at(self, var: sympy.Symbol, index: sympy.Expr):
return self.stride_at(var, index) == 1
def is_invariant_under(self, var: sympy.Symbol, index: sympy.Expr):
expanded_index = sympy.expand(index)
return not expanded_index.has(var)
def load(self, name: str, index: sympy.Expr):
var = self.args.input(name)
index = self.rename_indexing(index)
expanded_index = sympy.expand(index)
new_index = self.scale_index_with_offset(index, self.tiling_factor)
is_broadcast = expanded_index == new_index
var_expr = (
f"{var}[{cexpr(index)}]" if is_broadcast else f"{var} + {cexpr(new_index)}"
)
if V.graph.get_dtype(name) in [torch.bool, torch.uint8]:
nelements = codecache.pick_vec_isa().nelements()
if var not in self.var_vec_buf_map:
self.var_vec_buf_map[var] = f"g_tmp_buffer_{var}"
self.loads.writeline(
f"float {self.var_vec_buf_map[var]}[{nelements}] = {{0}};"
)
self.loads.writeline(
f"flag_to_float({var_expr}, {self.var_vec_buf_map[var]}, {nelements});"
)
line = f"at::vec::Vectorized<float>::loadu({self.var_vec_buf_map[var]})"
elif is_broadcast:
line = f"at::vec::Vectorized<float>({var_expr})"
else:
line = f"at::vec::Vectorized<float>::loadu({var_expr})"
return self.cse.generate(self.loads, line)
def store(self, name, index, value, mode=None):
assert "buf" in name
var = self.args.output(name)
index = self.rename_indexing(index)
assert mode is None
expanded_index = sympy.expand(index)
new_index = self.scale_index_with_offset(index, self.tiling_factor)
assert new_index != expanded_index
line = f"{value}.store({var} + {cexpr(new_index)});"
self.stores.writeline(name, line)
def reduction(self, name, dtype, src_dtype, reduction_type, index, value):
assert reduction_type in {"max", "min", "sum"}
assert dtype == torch.float
assert src_dtype == torch.float
reduce_map = {"max": "maximum", "min": "minimum"}
vec_ns = "at::vec"
vec = f"{vec_ns}::Vectorized<{DTYPE_TO_CPP[dtype]}>"
if reduction_type not in self.reduction_omp_dec:
vec_reduc_prefix = "#pragma omp declare reduction("
vec_reduc_prefix += f"{RTYPE_TO_CPP[reduction_type]}:{vec}:"
if reduction_type == "sum":
vec_reduc_prefix += "omp_out += omp_in"
else:
vec_reduc_prefix += (
f"omp_out = {vec_ns}::{reduce_map[reduction_type]}(omp_out, omp_in)"
)
vec_reduc_prefix += ")"
vec_reduc_prefix += " initializer("
vec_reduc_prefix += "omp_priv={{"
vec_reduc_prefix += f"{reduction_init(reduction_type, dtype)}"
vec_reduc_prefix += "}})"
self.reduction_omp_dec[reduction_type] = RTYPE_TO_CPP[reduction_type]
self.reduction_prefix.writeline(vec_reduc_prefix)
tmpvar = self.cse.generate(
self.loads, f"reduction {name} {cexpr(index)}", write=False
)
tmpvar_vec = f"{tmpvar}_vec"
index = self.rename_indexing(index)
self.reduction_var_map[tmpvar_vec] = reduction_type
self.reduction_prefix.writeline(
f"{DTYPE_TO_CPP[dtype]} {tmpvar} = {reduction_init(reduction_type, dtype)};"
)
self.reduction_prefix.writeline(
f"auto {tmpvar_vec} = at::vec::Vectorized<{DTYPE_TO_CPP[dtype]}>({tmpvar});"
)
self.stores.writeline(
None, f"{reduction_combine_vec(reduction_type, tmpvar_vec, value)};"
)
reduce_all_body = "{"
if reduction_type == "sum":
reduce_all_body += "return x + y;"
else:
reduce_all_body += f"return {vec_ns}::{reduce_map[reduction_type]}(x, y);"
reduce_all_body += "}"
vec_reduce_all_func = f"{vec_ns}::vec_reduce_all<{DTYPE_TO_CPP[dtype]}>"
next_value = f"{vec_reduce_all_func}([]({vec}& x, {vec}&y) {reduce_all_body}, {tmpvar_vec})"
self.reduction_suffix.writeline(
name,
f"{reduction_combine(reduction_type, tmpvar, next_value)};",
)
# NOTE(jgong5): we do not generate the real stores here with the assumption that
# the scalar kernel that handles the loop tail would be generated and generates
# the stores there.
self.cse.store_cache[name] = tmpvar
class CppTile2DKernel(CppVecKernel):
"""
A vector kernel that handles the 2d tiles with the tile size defined in `tiling_factor` on
the inner-most loop level and one of the outer loop level (`outer_tiling_idx`). When the data
tile is accessed in a contiguous way from the outer loop axis, a transposition is applied on the
tile to make the access contiguous from the inner-most loop axis. Then, the same vectorization
logic from its parent `CppVecKernel` is leveraged for load/store/compute. The transposed tile load
and store are generated into kernel.preloads and kernel.poststores buffers.
The loop structure looks like below:
for ...
for i_outer ...
for ...
for inner_most ...
// generated by CppTile2DKernel
float tmp0[16*16]; at::vec::transpose_mxn<...>(tmp0, in_ptr0 + ..., ...); // into kernel.preloads
float tmp1[16*16]; // into kernel.preloads
for i_inner ... { // the kernel inner loop
vectorized loads/compute/stores (e.g., load tmp0, store tmp1) // into kernel.loads/compute/stores
}
at::vec::transpose_mxn(out_ptr0 + ..., tmp1, ...) // into kernel.poststores
for inner_most ... (tail)
// generated by CppTile2DTailKernel
...
for i_outer ... (tail)
for ...
for ...
// generated by CppKernel
...
"""
def __init__(self, args, num_threads, tiling_factor, outer_tiling_idx):
super().__init__(args, num_threads, tiling_factor)
self.outer_tiling_idx = outer_tiling_idx
def inner_itervar(self):
return sympy.symbols(f"{self.itervars[self.outer_tiling_idx]}_inner")
def need_vec_transpose(self, index):
return self.is_stride1_at(
self.itervars[self.outer_tiling_idx], index
) and not self.is_invariant_under(self.itervars[-1], index)
def gen_transposed_tile_load_store(self, name, var, index, is_store):
# transposed tile load/store outside the kernel inner loop
factor = self.tiling_factor
new_index = self.scale_index_with_offset(index, factor, itervar_idx=-1)
new_index = self.scale_index_with_offset(
new_index, factor, itervar_idx=self.outer_tiling_idx
)
src = f"{var} + {cexpr(new_index)}"
dst = "__place_holder__"
ld_src = f"{cexpr(self.stride_at(self.itervars[-1], index))}"
ld_dst = f"{factor}"
if is_store:
src, dst = dst, src
ld_src, ld_dst = ld_dst, ld_src
need_define = True
load_or_store = f"at::vec::transpose_mxn<float,{factor},{factor}>({src}, {ld_src}, {dst}, {ld_dst});"
if is_store:
tile_var = self.cse.newvar()
elif load_or_store not in self.cse.cache:
tile_var = self.cse.generate(self.preloads, load_or_store, write=False)
else:
need_define = False
tile_var = self.cse.cache[load_or_store]
if need_define:
define_line = f"float {tile_var}[{factor}*{factor}] __attribute__ ((aligned ({factor})));"
self.preloads.writeline(define_line)
load_or_store = load_or_store.replace("__place_holder__", str(tile_var))
if is_store:
self.poststores.writeline(name, load_or_store)
else:
self.preloads.writeline(load_or_store)
return tile_var
def load(self, name: str, index: sympy.Expr):
var = self.args.input(name)
index = self.rename_indexing(index)
inner = self.inner_itervar()
expanded_index = sympy.expand(index)
if self.need_vec_transpose(expanded_index):
tile_var = self.gen_transposed_tile_load_store(
name, var, expanded_index, is_store=False
)
# vector load inside the kernel inner loop
line = f"at::vec::Vectorized<float>::loadu({tile_var} + {cexpr(inner * self.tiling_factor)})"
return self.cse.generate(self.loads, line)
else:
new_index = self.scale_index_with_offset(
expanded_index,
self.tiling_factor,
itervar_idx=self.outer_tiling_idx,
offset=inner,
)
return super().load(name, new_index)
def store(self, name, index, value, mode=None):
assert "buf" in name
var = self.args.output(name)
inner = self.inner_itervar()
index = self.rename_indexing(index)
assert mode is None
# TODO(jgong5): assert the index is an affine expression on the itervars in concern
expanded_index = sympy.expand(index)
if self.need_vec_transpose(expanded_index):
tile_var = self.gen_transposed_tile_load_store(
name, var, expanded_index, is_store=True
)
# vector store inside the kernel inner loop
line = f"{value}.store({tile_var} + {cexpr(inner * self.tiling_factor)});"
self.stores.writeline(name, line)
else:
new_index = self.scale_index_with_offset(
expanded_index,
self.tiling_factor,
itervar_idx=self.outer_tiling_idx,
offset=inner,
)
super().store(name, new_index, value, mode)
def codegen_inner_loops(self, code):
inner = self.inner_itervar()
code.writeline(
f"for (long {inner} = 0; {inner} < {self.tiling_factor}; {inner}++)"
)
class CppTile2DTailKernel(CppKernel):
"""
A scalar kernel that handles the tail of inner-most loop split from a 2d tiling. The tile of the outer
loop axis is handled with a kernel inner loop (see method `codegen_inner_loops`).
"""
def __init__(self, args, num_threads, tiling_factor, outer_tiling_idx):
super().__init__(args, num_threads)
self.outer_tiling_idx = outer_tiling_idx
self.tiling_factor = tiling_factor
def inner_itervar(self):
return sympy.symbols(f"{self.itervars[self.outer_tiling_idx]}_inner")
def transform_index(self, index):
index = self.rename_indexing(index)
expanded_index = sympy.expand(index)
new_index = self.scale_index_with_offset(
expanded_index,
self.tiling_factor,
itervar_idx=self.outer_tiling_idx,
offset=self.inner_itervar(),
)
return new_index
def load(self, name: str, index: sympy.Expr):
new_index = self.transform_index(index)
return super().load(name, new_index)
def store(self, name, index, value, mode=None):
assert "buf" in name
var = self.args.output(name)
assert mode is None
new_index = self.transform_index(index)
super().store(name, new_index, value, mode)
def codegen_inner_loops(self, code):
inner = self.inner_itervar()
code.writeline(
f"for (long {inner} = 0; {inner} < {self.tiling_factor}; {inner}++)"
)
class CppVecKernelChecker(CppVecKernel):
def __init__(self, args, num_threads, tiling_factor):
super().__init__(args, num_threads, tiling_factor)
# Since this kernel is only for checker but does not genreate any
# code, so we need to decrease the kernel count.
metrics.generated_kernel_count -= 1
metrics.generated_cpp_vec_kernel_count -= 1
# Used to recorde the graph wrapper code as the wrapper_code status could be
# changed during graph run.
self._orig_wrapper_code = None
self.simd_vec = True
self.fast_vec_list = []
for k, v in CppVecOverrides.__dict__.items():
if isinstance(v, staticmethod):
self.fast_vec_list.append(k)
self.exit_stack = contextlib.ExitStack()
# Cache all the load result
self.load_results: list[CSEVariable] = []
self.load_supported_dtypes: list[torch.dtype] = [
torch.float,
torch.float32,
torch.bool,
torch.uint8,
]
self.store_supported_dtypes: list[torch.dtype] = [torch.float, torch.float32]
# Cache the dtypes of the store operation. If the store is mixing dtypes, the
# vectorization would not support it as it is hard to determine the vec dtype
self.store_dtypes: list[torch.dtype] = []
# The dtype is used for vectorization
self.vec_dtype: torch.dtype = torch.float32
def is_indirect_indexing(self, index: sympy.Expr):
for _load_res in self.load_results:
# The index expression contains a value that loads from memory
if index.count(sympy_symbol(_load_res.name)) > 0:
return True
return False
def could_vec(self, name: str, index: sympy.Expr):
assert self.itervars is not None
# Not a loop
if len(self.itervars) == 0:
return False
if self.is_indirect_indexing(index):
return False
most_inner_var = self.itervars[-1]
return self.is_invariant_under(most_inner_var, index) or self.is_stride1_at(
most_inner_var, index
)
def is_mask(self, name: str, users: Dict[torch.fx.Node, None]):
load_type = V.graph.get_dtype(name)
if load_type == torch.bool:
return all(user.target in ("where", "masked") for user in users.keys())
elif load_type == torch.uint8:
"""
If the load value is torch.uint8, then we only support the loaded
value is as the mask.
"""
if not all(
user.target == "to_dtype" and user.args[-1] == torch.bool
for user in users.keys()
):
return False
for to_dtype_node in users.keys():
assert to_dtype_node.target == "to_dtype"
if not all(
user.target in ("where", "masked")
for user in to_dtype_node.users.keys()
):
return False
return True
else:
return False
def load(self, name: str, index: sympy.Expr):
with RecordOptimizationContext(__name__) as node_ctx:
load_dtype = V.graph.get_dtype(name)
opt_ctx: OptimizationContext = node_ctx.get_opt_ctx()
assert opt_ctx
opt_ctx.dtype = load_dtype
opt_ctx.is_load_as_mask = self.is_mask(name, node_ctx.get_fx_node().users)
var = self.cse.newvar()
self.load_results.append(var)
if load_dtype in [torch.bool, torch.uint8] and not opt_ctx.is_load_as_mask:
self.simd_vec = False
return var
if load_dtype not in self.load_supported_dtypes:
self.simd_vec = False
return var
index = self.rename_indexing(index)
self.simd_vec = self.simd_vec and self.could_vec(name, index)
return var
def store(self, name, index, value, mode=None):
with RecordOptimizationContext(__name__) as node_ctx:
store_dtype = V.graph.get_dtype(name)
opt_ctx: OptimizationContext = node_ctx.get_opt_ctx()
assert opt_ctx
opt_ctx.dtype = store_dtype
store_dtype = torch.float if store_dtype == torch.float32 else store_dtype
self.store_dtypes.append(store_dtype)
if store_dtype not in self.store_supported_dtypes:
self.simd_vec = False
return self.simd_vec
assert "buf" in name
index = self.rename_indexing(index)
if mode:
self.simd_vec = False
return False
self.simd_vec = self.simd_vec and self.could_vec(name, index)
return self.simd_vec
def reduction(self, name, dtype, src_dtype, reduction_type, index, value):
if (
dtype == torch.float
and src_dtype == torch.float
and reduction_type in ["max", "min", "sum"]
):
pass
else:
self.simd_vec = False
return self.simd_vec
def is_supported_cmp(self, node: torch.fx.Node):
def get_node_dtype(node):
if type(node) == torch.fx.Node:
opt_ctx: OptimizationContext = get_current_node_opt_ctx()
return opt_ctx.dtype if opt_ctx else None
else:
return None
def get_cmp_dtypes(node: torch.fx.Node):
return get_node_dtype(node.args[-2]), get_node_dtype(node.args[-1])
assert len(node.args) >= 2
# cmp(x, y): y is a magic value like x >= 1
if type(node.args[-1]) in [int, float]:
return True
# cmp(x, y): x is a magic value like 1 >= y
if type(node.args[-2]) in [int, float]:
return False
left_dtype, right_dtype = get_cmp_dtypes(node)
if left_dtype is None or right_dtype is None:
# TODO(Eikan): To record, deduce and propagate the data type of every expression.
return True
else:
return left_dtype == right_dtype
def is_load_only_block(self, sub_graph: torch.fx.Graph):
# The sub graph only contains "placeholder", "output", "get_index", "load"
is_load_only = False
load_dtype = None
skip_io_nodes = ["placeholder", "output"]
for _node in sub_graph.nodes:
if _node.op in skip_io_nodes:
continue
if _node.target not in ["load", "get_index"]:
# The body contains non load node
is_load_only = False
break
if _node.target == "load":
_, name, _ = _node.args
load_dtype = V.graph.get_dtype(name)
is_load_only = True
return is_load_only, load_dtype
def __exit__(self, exc_type, exc_val, exc_tb):
assert self._orig_wrapper_code is not None
# Restore the wrapper_code
V.graph.wrapper_code = self._orig_wrapper_code
self.exit_stack.__exit__(exc_type, exc_val, exc_tb)
def __enter__(self):
# Recorde the graph wrapper code. The wrapper_code status could be
# changed during graph run. Regarding this checker, we also need to
# run the graph but we don't expect to change any status that would
# impact the code generation. Hence, we record the graph wapper code
# and replace it with a dummy warpper_code and then restore to the
# original one as long as the checker is finished.
self._orig_wrapper_code = V.graph.wrapper_code
V.graph.wrapper_code = WrapperCodeGen()
class VecCheckerProxy:
@staticmethod
def _bin_cmp_op(x, y):
current_node: torch.fx.Node = V.interpreter.current_node
if not self.is_supported_cmp(current_node):
self.simd_vec = False
return self.simd_vec
@staticmethod
def __getattr__(name):
bin_cmp_ops = ["eq", "ne", "le", "ge", "lt", "gt"]
def inner(*args, **kwargs):
if name in bin_cmp_ops:
return VecCheckerProxy._bin_cmp_op(args, kwargs)
if not (name in self.fast_vec_list):
self.simd_vec = False
return self.simd_vec
return inner
@staticmethod
def load(name: str, index: sympy.Expr):
return self.load(name, index)
@staticmethod
def store(name, index, value, mode=None):
return self.store(name, index, value, mode=mode)
@staticmethod
def reduction(name, dtype, src_dtype, reduction_type, index, value):
return self.reduction(
name, dtype, src_dtype, reduction_type, index, value
)
@staticmethod
def constant(val, dtype):
with RecordOptimizationContext(__name__) as node_ctx:
opt_ctx: OptimizationContext = node_ctx.get_opt_ctx()
assert opt_ctx
opt_ctx.dtype = dtype
i32_iinfo = numpy.iinfo(numpy.int32)
if (
dtype == torch.int64
and val <= i32_iinfo.max
and val >= i32_iinfo.min
):
opt_ctx.dtype = torch.int32
f32_iinfo = numpy.finfo(numpy.float32)
if dtype == torch.double:
if (
(val <= f32_iinfo.max and val >= f32_iinfo.min)
or (val == numpy.inf)
or (val == -numpy.inf)
):
opt_ctx.dtype = torch.float32
supported_dtype = (torch.float32, torch.int32)
is_supported_dtype = opt_ctx.dtype in (supported_dtype)
if not is_supported_dtype:
self.simd_vec = False
return is_supported_dtype
@staticmethod
def index_expr(expr, dtype):
current_node: torch.fx.Node = V.interpreter.current_node
assert len(self.ranges) == len(self.itervars)
if not len(self.ranges) or not all(
not isinstance(range, sympy.Expr) or sympy.simplify(range).is_number
for range in self.ranges
):
# if the range value is sympy.Expr, we might could not deduce the accurate loop interval.
self.simd_vec = False
return self.cse.newvar()
def mod_indexing_rep(x, y, z):
if z.is_constant():
return x / y
# never really happens, we'll bail on optimizing
return (x / y) % z
def indexing_div_rep(x, y):
return x / y
with RecordOptimizationContext(__name__) as node_ctx:
assert len(self.ranges) == len(self.itervars)
opt_ctx: OptimizationContext = node_ctx.get_opt_ctx()
assert opt_ctx
max_expr = expr.replace(
ir.ModularIndexing, mod_indexing_rep
).replace(ir.FloorDiv, indexing_div_rep)
min_expr = max_expr
for idx in range(len(self.ranges)):
max_expr = sympy.maximum(
max_expr,
self.itervars[idx],
sympy.Interval(0, self.ranges[idx]),
)
min_expr = sympy.minimum(
min_expr,
self.itervars[idx],
sympy.Interval(0, self.ranges[idx]),
)
i32_iinfo = numpy.iinfo(numpy.int32)
if (
dtype == torch.int64
and max_expr.is_number
and min_expr.is_number
and max_expr <= i32_iinfo.max
and min_expr >= i32_iinfo.min
):
opt_ctx.dtype = torch.int32
else:
opt_ctx.dtype = dtype
self.simd_vec = False
# Pick the most inner loop variable since we always vectorize the
# most inner loop
most_inner_var = self.itervars[-1]
most_inner_loop_irrevelant = self.is_invariant_under(
most_inner_var, expr
)
if not most_inner_loop_irrevelant:
self.simd_vec = False
opt_ctx.is_most_inner_loop_irrevelant = most_inner_loop_irrevelant
tmp_var = self.cse.newvar()
return tmp_var
@staticmethod
def indirect_indexing(index_var):
self.simd_vec = False
return sympy.Symbol(str(index_var))
@staticmethod
def masked(mask, body, other):
with RecordOptimizationContext(__name__) as node_ctx:
opt_ctx: OptimizationContext = node_ctx.get_opt_ctx()
assert opt_ctx
is_masked_load, load_dtype = self.is_load_only_block(body.graph)
opt_ctx.dtype = load_dtype
opt_ctx.is_masked_load = is_masked_load
_simd_vec = is_masked_load and load_dtype in [
torch.float32,
torch.float,
]
if not _simd_vec:
self.simd_vec = False
tmp_var = self.cse.newvar()
return tmp_var
@staticmethod
def to_dtype(x, dtype):
with RecordOptimizationContext(__name__) as node_ctx:
opt_ctx: OptimizationContext = node_ctx.get_opt_ctx()
assert opt_ctx
opt_ctx.dtype = dtype
if dtype != torch.bool:
self.simd_vec = False
return x
self.exit_stack.enter_context(V.set_ops_handler(VecCheckerProxy()))
self.exit_stack.enter_context(V.set_kernel_handler(self))
return self
class CppTile2DKernelChecker(CppVecKernelChecker):
"""
Currently, we only address the situations with following constraints.
1. There exists one and only one fp32 load/store with outer loop var having contiguous buffer accesses.
2. When a load/store doesn't have contiguous access in an outer loop var, the access should be
vectorizable from the inner-most dim.
3. No reduction.
"""
def __init__(self, args, num_threads, tiling_factor):
super().__init__(args, num_threads, tiling_factor)
self.can_tile2d = True
self.outer_tiling_idx = -1
def check_can_tile2d(self, name: str, index: sympy.Expr):
if not self.can_tile2d:
return
# make sure the transpose_mxn(src, ld_src, dst, ld_dst) ld_src doesn't depend on most inner var.
if len(self.itervars) > 0 and not self.is_invariant_under(
self.itervars[-1], self.stride_at(self.itervars[-1], index)
):
self.can_tile2d = False
return
# check contiguity from any of the outer loops
has_stride1 = False
for loop_idx, itervar in enumerate(self.itervars[:-1]):
if self.is_stride1_at(itervar, index):
# only support 2d tile now
if V.graph.get_dtype(name) not in [torch.float, torch.float32] or (
self.outer_tiling_idx >= 0 and self.outer_tiling_idx != loop_idx
):
self.can_tile2d = False
return
else:
self.outer_tiling_idx = loop_idx
has_stride1 = True
if not has_stride1 and not self.could_vec(name, index):
self.can_tile2d = False
return self.can_tile2d
def load(self, name: str, index: sympy.Expr):
if not V.graph.get_dtype(name) in [
torch.float,
torch.float32,
torch.bool,
torch.uint8,
]:
self.can_tile2d = False
return self.can_tile2d
index = self.rename_indexing(index)
return self.check_can_tile2d(name, index)
def store(self, name, index, value, mode=None):
if not V.graph.get_dtype(name) in [
torch.float,
torch.float32,
]:
self.can_tile2d = False
return self.can_tile2d
index = self.rename_indexing(index)
return self.check_can_tile2d(name, index)
def reduction(self, name, dtype, src_dtype, reduction_type, index, value):
self.can_tile2d = False
return self.can_tile2d
def __exit__(self, exc_type, exc_val, exc_tb):
super().__exit__(exc_type, exc_val, exc_tb)
if not self.simd_vec or self.outer_tiling_idx < 0:
self.can_tile2d = False
class CppKernelProxy(CppKernel):
def __init__(self, kernel_group):
super().__init__(kernel_group.args, kernel_group.ws.num_threads)
self.kernel_group = kernel_group
self.loop_nest = None
self.call_ranges = None
self.picked_vec_isa: codecache.VecISA = codecache.pick_vec_isa()
def codegen_nodes(self, nodes):
kernel_group = self.kernel_group
_, (group, reduction_group) = max(
nodes, key=lambda x: int(x.is_reduction())
).group
def codegen_kernel(cls, *args):
with kernel_group.new_kernel(cls, *args) as kernel:
run(kernel)
# Ugly hack to maitain the metrics kernel count since
# we only count in CppKernelProxy, not those contained in it
metrics.generated_kernel_count -= 1
return kernel
def run(kernel):
vars, reduction_vars = kernel.set_ranges(group, reduction_group)
in_suffix = False
for node in nodes:
if node.group[1] in [
(group, reduction_group),
(group + reduction_group, ()),
]:
assert not in_suffix
node.run(vars, reduction_vars)
else:
in_suffix = True
assert node.group[1] == (
group,
(),
), f"unexpected group: {node.group[1]} != {group}, {reduction_group}"
# we can fuse in some extra pointwise into the suffix
with kernel.write_to_suffix():
node.run(vars, ())
scalar_kernel = codegen_kernel(CppKernel)
inner_most_idx = len(scalar_kernel.itervars) - 1
self.call_ranges = scalar_kernel.call_ranges
self.loop_nest = LoopNestWithSplit.build(scalar_kernel)
if not self.picked_vec_isa:
return
# TODO(jgong5): support alternative tiling factors and data types
tiling_factor = self.picked_vec_isa.nelements(dtype=torch.float)
# Kernels share the same global contexts like V.graph.wrapper_code, V.kernel.args.
# But the generated scalar kernel has updated these global contexts. Hence, the other kernels
# should not do this again to avoid context conflict. By now, we only control the
# config.inplace_buffers. In the future, we could maintain more contexts.
with torch._inductor.config.patch(inplace_buffers=False):
with CppVecKernelChecker(
deepcopy(self.kernel_group.args), parallel_num_threads(), tiling_factor
) as vec_checker:
run(vec_checker)
with CppTile2DKernelChecker(
deepcopy(self.kernel_group.args), parallel_num_threads(), tiling_factor
) as tile2d_checker:
run(tile2d_checker)
if vec_checker.simd_vec:
main_loop, tail_loop = self.loop_nest.split_with_tiling(
inner_most_idx, factor=tiling_factor
)
main_loop.set_kernel(codegen_kernel(CppVecKernel, tiling_factor))
tail_loop.set_kernel(scalar_kernel)
main_loop.simd_vec = True
tail_loop.simd_omp = True
# We chop the loop into two cubes by the nelements - main loop and tail loop.
# Regarding the main loop, it is straightforward that it could be vectorized with
# nelements. But for the tail loop, it still could be vectorized. For example,
# if the nelements is 8(256bits), then the tail loop still could be vectorized
# as 4(128bits).
tail_loop.simd_nelements = tiling_factor // 2
elif tile2d_checker.can_tile2d:
outer_tiling_idx = tile2d_checker.outer_tiling_idx
assert outer_tiling_idx < inner_most_idx
outer_main_loop, outer_tail_loop = self.loop_nest.split_with_tiling(
outer_tiling_idx, factor=tiling_factor
)
outer_tail_loop.set_kernel(scalar_kernel)
inner_main_loop, inner_tail_loop = outer_main_loop.split_with_tiling(
inner_most_idx - outer_tiling_idx, factor=tiling_factor
)
inner_main_loop.set_kernel(
codegen_kernel(CppTile2DKernel, tiling_factor, outer_tiling_idx)
)
inner_tail_loop.set_kernel(
codegen_kernel(CppTile2DTailKernel, tiling_factor, outer_tiling_idx)
)
def codegen_loops(self, code, worksharing):
self.codegen_loops_impl(self.loop_nest, code, worksharing)
class CppScheduling:
def __init__(self, scheduler):
self.scheduler = scheduler
self.get_kernel_group()
def group_fn(self, sizes):
return tuple(tuple(map(V.graph.sizevars.simplify, s)) for s in sizes)
def get_kernel_group(self):
from .wrapper import CppWrapperCodeGen
if isinstance(V.graph.wrapper_code, CppWrapperCodeGen):
self.kernel_group = CppWrapperKernelGroup()
else:
self.kernel_group = KernelGroup()
@staticmethod
def can_fuse_horizontal(node1, node2):
_, (vars1, reduce1) = node1.group
_, (vars2, reduce2) = node2.group
if vars1 == vars2 and reduce1 == reduce2:
return True
if reduce1 == () and vars1 == vars2 + reduce2:
return True
# TODO(jansel): allow fusion pointwise (vars1, ()) suffix?
return False
@classmethod
def can_fuse_vertical(cls, node1, node2):
return cls.can_fuse_horizontal(node1, node2) and not node1.is_reduction()
def codegen_nodes(self, nodes):
"""
Turn an set of pre-fused nodes into a C++ kernel.
"""
kernel_group = self.kernel_group
cpp_kernel_proxy = CppKernelProxy(kernel_group)
cpp_kernel_proxy.codegen_nodes(nodes)
kernel_group.finalize_kernel(cpp_kernel_proxy, None)
def codegen_sync(self):
pass
def flush(self):
self.kernel_group.codegen_define_and_call(V.graph.wrapper_code)
self.get_kernel_group()
class KernelGroup:
def __init__(self):
super().__init__()
self.args = KernelArgs()
self.loops_code = BracesBuffer()
self.ws = WorkSharing(self.loops_code)
self.stack = contextlib.ExitStack()
self.stack.enter_context(self.ws)
self.count = 0
def new_kernel(self, cls, *args):
return cls(self.args, parallel_num_threads(), *args)
def finalize_kernel(self, new_kernel, scheduler):
self.count += 1
code = self.loops_code
ws = self.ws
new_kernel.codegen_loops(code, ws)
def codegen_define_and_call(self, wrapper):
self.stack.close()
if self.count == 0:
return
kernel_name = "kernel_cpp_" + wrapper.next_kernel_suffix()
arg_defs, call_args, arg_types = self.args.cpp_argdefs()
arg_defs = ",\n".ljust(25).join(arg_defs)
arg_types = ",".join(arg_types)
code = BracesBuffer()
# TODO: support kernel profile on other platforms
enable_kernel_profile = (
config.cpp.enable_kernel_profile and sys.platform == "linux"
)
if enable_kernel_profile:
code.writelines(["#include <ATen/record_function.h>"])
code.writelines([cpp_prefix(), "" f'extern "C" void kernel({arg_defs})'])
with code.indent():
if enable_kernel_profile:
graph_id = V.graph.graph_id
prefix = "graph_" + str(graph_id) + "_" if graph_id is not None else ""
code.writelines(
[
f'RECORD_FUNCTION("{prefix + kernel_name}", c10::ArrayRef<c10::IValue>({{}}));'
]
)
for old, new in self.args.aliases():
code.writeline(f"auto {old} = {new};")
code.splice(self.loops_code)
codecache_def = IndentedBuffer()
codecache_def.writeline("async_compile.cpp('''")
codecache_def.splice(code)
codecache_def.writeline("''')")
codecache_str = codecache_def.getvalue()
# TODO(voz): Ostensibly, we should not need this. But there are cases where C++ codegen does
# not use BracesBuffer, so we have no good indicator of a C++ buffer atm.
codecache_str = codecache_str.replace("#pragma CMT", "//")
wrapper.define_kernel(kernel_name, codecache_str)
wrapper.load_kernel(kernel_name, code, arg_types)
# generate the code to call this
wrapper.generate_kernel_call(kernel_name, call_args)
class CppWrapperKernelGroup(KernelGroup):
def __init__(self):
super().__init__()
self.args = CppWrapperKernelArgs()
class WorkSharing:
def __init__(self, code):
self.code = code
self.in_parallel = False
self.num_threads = None
self.stack = contextlib.ExitStack()
def parallel(self, threads):
if self.in_parallel and threads != self.num_threads:
# wrong number of threads
self.close()
if not self.in_parallel:
self.num_threads = threads
self.in_parallel = True
if config.cpp.dynamic_threads:
self.code.writeline("#pragma omp parallel")
else:
self.code.writeline(f"#pragma omp parallel num_threads({threads})")
self.stack.enter_context(self.code.indent())
def single(self):
if self.in_parallel:
self.code.writeline("#pragma omp single")
return self.in_parallel
def close(self):
self.stack.close()
self.in_parallel = False
def __enter__(self):
self.stack.__enter__()
return self
def __exit__(self, exc_type, exc_val, exc_tb):
self.stack.__exit__(exc_type, exc_val, exc_tb)
@dataclasses.dataclass
class LoopLevel:
var: sympy.Expr = None
size: sympy.Expr = None
offset: sympy.Expr = sympy.Integer(0)
steps: sympy.Expr = sympy.Integer(1)
parallel: int = 0
simd_omp: bool = False
picked_vec_isa: codecache.VecISA = codecache.pick_vec_isa()
simd_nelements: int = picked_vec_isa.nelements() if picked_vec_isa else 0
simd_vec: bool = False
collapsed: bool = False
reduction_var_map: Dict[str, str] = None
parent: "LoopLevel" = None
# the next inner level of the loop, empty if it is inner-most
# contains >1 LoopLevel if the inner level of loop is split
inner: List["LoopLevel"] = dataclasses.field(default_factory=list)
# kernel assigned to this loop level, only valid when it is a leaf
kernel: CppKernel = None
def get_kernels(self) -> List[CppKernel]:
"""Get all kernel objects under this loop level"""
if self.kernel:
return [self.kernel]
kernels = []
for loop in self.inner:
kernels += loop.get_kernels()
return kernels
def set_kernel(self, kernel: CppKernel):
"""
Set the kernel under this loop level. No split is allowed under
this loop level.
"""
if not self.inner:
self.kernel = kernel
loop = self
if loop.is_reduction():
loop.reduction_var_map = kernel.reduction_var_map.copy()
loop = loop.parent
while loop is not None and loop.is_reduction():
loop.reduction_var_map.update(kernel.reduction_var_map)
loop = loop.parent
return
assert len(self.inner) == 1
self.inner[0].set_kernel(kernel)
def get_loops_at(self, depth) -> List["LoopLevel"]:
if depth == 0:
return [self]
else:
loops = []
for loop in self.inner:
loops += loop.get_loops_at(depth - 1)
return loops
def is_reduction(self):
return bool(self.reduction_var_map)
def split_with_tiling(self, depth, factor):
def clone_inner():
inner = []
if self.inner:
for loop in self.inner:
inner.append(loop.clone())
return inner
def do_split_with_tiling():
sympy_factor = sympy.Integer(factor)
main_loop_range = ir.FloorDiv(self.size, sympy_factor)
main_loop = LoopLevel(self.var, main_loop_range)
main_loop.parallel = self.parallel
main_loop.collapsed = False
main_loop.reduction_var_map = self.reduction_var_map
main_loop.inner = clone_inner()
if main_loop.inner:
for loop in main_loop.inner:
loop.parent = main_loop
offset = main_loop_range * sympy_factor
tail_loop = LoopLevel(self.var, self.size)
tail_loop.offset = offset
tail_loop.parallel = self.parallel
tail_loop.collapsed = False
tail_loop.reduction_var_map = self.reduction_var_map
tail_loop.inner = clone_inner()
if tail_loop.inner:
for loop in tail_loop.inner:
loop.parent = tail_loop
return main_loop, tail_loop
if depth == 0:
main_loop, tail_loop = do_split_with_tiling()
parent = self.parent
if parent:
parent.inner = [main_loop, tail_loop]
main_loop.parent = parent
tail_loop.parent = parent
return main_loop, tail_loop
else:
assert len(self.inner) == 1
return self.inner[0].split_with_tiling(depth - 1, factor)
def clone(self):
loop = copy(self)
loop.inner = []
if self.inner:
for inner_loop in self.inner:
inner_loop_clone = inner_loop.clone()
inner_loop_clone.parent = loop
loop.inner.append(inner_loop_clone)
loop.kernel = deepcopy(self.kernel)
return loop
def lines(self):
if self.reduction_var_map:
reduction = " " + " ".join(
f"reduction({RTYPE_TO_CPP[rtype]}:{var})"
for var, rtype in self.reduction_var_map.items()
)
else:
reduction = ""
simd = (
f"simd simdlen({self.simd_nelements}) "
if self.simd_omp and self.simd_nelements > 1
else ""
)
if self.parallel:
# TODO(jansel): look into chunk size and other schedules
line1 = f"#pragma omp for{reduction} "
if self.parallel > 1:
line1 += f" collapse({self.parallel})"
if self.simd_omp:
line1 = line1.replace(" for ", f" for {simd}")
elif self.simd_vec:
line1 = ""
elif self.simd_omp:
line1 = f"#pragma omp {simd}{reduction}"
elif not self.reduction_var_map and codecache.is_gcc():
line1 = "#pragma GCC ivdep"
else:
line1 = ""
line2 = f"for({INDEX_TYPE} {self.var}={cexpr(self.offset)}; {self.var}<{cexpr(self.size)}; {self.var}+={cexpr(self.steps)})"
if self.collapsed or not line1:
return [line2]
return [line1, line2]
@dataclasses.dataclass
class LoopNestWithSplit:
"""
A loop-nest like structure but with some loop level split along
the loop range into the main tiling loop and the tail. It is built
with the `build` method as a loop nest and then split with
`split_with_tiling` at some depth.
A typical case is for vectorization where we typically split at the inner-most
loop level. A more complicated case is 2D tiling where we split at
both inner-most and outer levels.
"""
root: List[LoopLevel] = None
kernel: CppKernel = None
@staticmethod
def build(kernel: CppKernel):
"""Build a LoopNest with the given `kernel` as the leaf"""
itervars = kernel.itervars
ranges = kernel.ranges
reduction_depth = kernel.reduction_depth
root: List[LoopLevel] = []
levels: List[LoopLevel] = root
loop: LoopLevel = None
for loop_idx, (var, size) in enumerate(zip(itervars, ranges)):
loop = LoopLevel(var, size, parent=loop)
if loop_idx >= reduction_depth:
loop.reduction_var_map = kernel.reduction_var_map.copy()
levels.append(loop)
levels = loop.inner
loop_nest = LoopNestWithSplit(root, len(itervars))
if loop:
loop.kernel = kernel
else:
loop_nest.kernel = kernel
return loop_nest
def __bool__(self):
return bool(self.root)
def get_loops_at(self, depth) -> List[LoopLevel]:
"""Get all the loop levels at the given `depth` (most outer loop has depth 0)"""
loops = []
for loop in self.root:
loops += loop.get_loops_at(depth)
return loops
@cache_on_self
def max_parallel_depth(self):
"""
Maximal allowed depth for parallelism:
1) Levels without splitting and
2) All reduction or non-reduction levels
When the loop is split at the top level, the max depth is 1.
"""
max_depth = 0
loops = self.root
if len(loops) > 1:
return 1
is_reduction = loops[0].is_reduction() if loops else False
while len(loops) == 1 and loops[0].is_reduction() == is_reduction:
max_depth += 1
loops = loops[0].inner
return max_depth
def is_reduction_only(self):
"""
Whether all the loops are for reduction. Reduction loops
are always the inner most ones.
"""
return self.root and self.root[0].is_reduction()
def mark_parallel(self, par_depth):
assert (
par_depth <= self.max_parallel_depth()
), "Parallel depth cannot exceed the maximal allowed parallel depth"
loops = self.root
for loop in loops:
loop.parallel = par_depth
for i in range(1, par_depth):
loops = loops[0].inner
loops[0].collapsed = True
def split_with_tiling(self, depth, factor):
"""
Split the loop into main and tail loops at given `depth` so that the range
of the main loop has range `floor_div(range, factor) * factor` and
the tail loop handles the remainder. The main loop is tiled
according to the `factor`.
"""
loops = self.get_loops_at(depth)
assert len(loops) == 1
split_loops = loops[0].split_with_tiling(0, factor)
if depth == 0:
self.root = split_loops
return split_loops