import collections
import contextlib
import dataclasses
import functools
import itertools
import logging
import math
import operator
from typing import Dict, List, Set
import sympy
import torch
from ..._dynamo import config as dynamo_config
from .. import config, ir, scheduler
from ..ir import ReductionHint
from ..optimize_indexing import indexing_dtype_strength_reduction
from ..utils import (
get_fused_kernel_name,
instance_descriptor,
sympy_product,
sympy_subs,
sympy_symbol,
)
from ..virtualized import ops, V
from .common import (
CSEVariable,
DeferredLine,
free_symbol_startswith,
IndentedBuffer,
index_prevent_reordering,
Kernel,
OpOverrides,
PythonPrinter,
SizeArg,
TensorArg,
)
log = logging.getLogger(__name__)
def signature_of(arg):
from triton.runtime.jit import JITFunction
if isinstance(arg, TensorArg):
tye = JITFunction._type_of(arg.dtype)
if V.graph.is_unspec_arg(arg.buffer):
# had unwrapped 0d tensor as scalar
new_tye = tye.lstrip("*")
if new_tye in ["fp16", "bf16"]:
return "fp32"
else:
return new_tye
else:
return tye
if isinstance(arg, SizeArg):
return JITFunction._key_of(V.graph.sizevars.size_hint(arg.expr))
raise NotImplementedError(f"unhandled {type(arg)}: {arg}")
def config_of(args):
from ..compile_fx import ALIGNMENT
def is_aligned(x):
if isinstance(x, TensorArg):
return x.buffer not in V.graph.unaligned_buffers
if isinstance(x, SizeArg):
return V.graph.sizevars.maybe_guard_multiple_of(x.expr, ALIGNMENT)
raise NotImplementedError(f"unhandled {type(x)}: {x}")
divisible_by_16 = [i for i, arg in enumerate(args) if is_aligned(arg)]
return instance_descriptor(tuple(divisible_by_16), ())
class TritonPrinter(PythonPrinter):
def _print_floor(self, expr):
assert len(expr.args) == 1
return f"tl.libdevice.floor({self.paren(self._print(expr.args[0]))})"
texpr = TritonPrinter().doprint
pexpr = PythonPrinter().doprint
def triton_compute_type(dtype):
triton_type_name = str(dtype).split(".")[-1]
if triton_type_name == "bool":
triton_type_name = "int1"
if triton_type_name in ("float16", "bfloat16"):
# float16 math is done in float32 inside the kernel
triton_type_name = "float32"
return f"tl.{triton_type_name}"
def triton_constant(value):
if value == float("inf"):
return 'float("inf")'
elif value == float("-inf"):
return 'float("-inf")'
elif math.isnan(value):
return 'float("nan")'
return repr(value)
class TritonCSEVariable(CSEVariable):
def __init__(self, name):
super().__init__(name)
# We'll use this to track which masks the variable needs when used for indirect indexing
self.mask_vars: Set[str] = set()
def update_on_args(self, name, args, kwargs):
# When making a variable that is going to be used in indirect indexing
# if a where clause is used it should mean that the result is always a
# valid index, so you shouldn't include any of the dependent variables
# in the resulting load mask
if name == "where":
return
for arg in args:
if isinstance(arg, TritonCSEVariable):
self.mask_vars.update(arg.mask_vars)
class TritonOverrides(OpOverrides):
"""Map element-wise ops to Triton"""
@staticmethod
def to_dtype(x, dtype: torch.dtype):
if dtype == torch.bool:
return f"({x} != 0)"
elif dtype == torch.uint8:
# to work around llvm uint conversion semantics
# that produces 0's for negative values
return f"{x}.to(tl.int8).to(tl.uint8)"
return f"{x}.to({triton_compute_type(dtype)})"
@staticmethod
def constant(value, dtype):
type_ = torch._prims_common.dtype_to_type(dtype)
return triton_constant(type_(value))
@staticmethod
def abs(x):
return f"tl.abs({x})"
@staticmethod
def libdevice_abs(x):
return f"tl.libdevice.abs({x})"
@staticmethod
def exp(x):
return f"tl.exp({x})"
@staticmethod
def libdevice_exp(x):
return f"tl.libdevice.exp({x})"
@staticmethod
def exp2(x):
return f"tl.libdevice.exp2({x})"
@staticmethod
def expm1(x):
return f"tl.libdevice.expm1({x})"
@staticmethod
def sqrt(x):
return f"tl.sqrt({x})"
@staticmethod
def libdevice_sqrt(x):
return f"tl.libdevice.sqrt({x})"
@staticmethod
def relu(x):
return ops.maximum("0", x)
@staticmethod
def minimum(a, b):
return f"tl.where({a} != {a}, {a}, tl.where({a} < {b}, {a}, {b}))"
@staticmethod
def maximum(a, b):
return f"tl.where({a} != {a}, {a}, tl.where({a} > {b}, {a}, {b}))"
@staticmethod
def where(a, b, c):
return f"tl.where({a}, {b}, {c})"
@staticmethod
def cos(x):
return f"tl.cos({x})"
@staticmethod
def libdevice_cos(x):
return f"tl.libdevice.cos({x})"
@staticmethod
def sin(x):
return f"tl.sin({x})"
@staticmethod
def libdevice_sin(x):
return f"tl.libdevice.sin({x})"
@staticmethod
def index_expr(expr, dtype):
return V.kernel.indexing(expr)[0]
@staticmethod
def masked(mask, body, other):
with V.kernel.mask_loads(mask) as new_mask:
result = body()
return ops.where(new_mask, result, triton_constant(other))
@staticmethod
def lgamma(x):
return f"tl.libdevice.lgamma({x})"
@staticmethod
def erf(x):
return f"tl.libdevice.erf({x})"
@staticmethod
def cosh(x):
return f"tl.libdevice.cosh({x})"
@staticmethod
def sinh(x):
return f"tl.libdevice.sinh({x})"
@staticmethod
def acos(x):
return f"tl.libdevice.acos({x})"
@staticmethod
def acosh(x):
return f"tl.libdevice.acosh({x})"
@staticmethod
def asin(x):
return f"tl.libdevice.asin({x})"
@staticmethod
def asinh(x):
return f"tl.libdevice.asinh({x})"
@staticmethod
def atan2(x, y):
return f"tl.libdevice.atan2({x}, {y})"
@staticmethod
def atan(x):
return f"tl.libdevice.atan({x})"
@staticmethod
def atanh(x):
return f"tl.libdevice.atanh({x})"
@staticmethod
def copysign(x, y):
return f"tl.libdevice.copysign({x}, {y})"
@staticmethod
def erfc(x):
return f"tl.libdevice.erfc({x})"
@staticmethod
def hypot(x, y):
return f"tl.libdevice.hypot({x}, {y})"
@staticmethod
def log10(x):
return f"tl.libdevice.log10({x})"
@staticmethod
def nextafter(x, y):
return f"tl.libdevice.nextafter({x}, {y})"
@staticmethod
def logical_and(a, b):
return f"{a} & {b}"
@staticmethod
def logical_or(a, b):
return f"{a} | {b}"
@staticmethod
def rand(seed, offset, _): # _ here to keep the contract identical to CPU rand op
return f"tl.rand({seed}, {offset})"
@staticmethod
def randn(seed, offset, _): # _ here to keep the contract identical to CPU randn op
return f"tl.randn({seed}, {offset})"
@staticmethod
def rsqrt(x):
return f"tl.libdevice.rsqrt({x})"
@staticmethod
def log1p(x):
return f"tl.libdevice.log1p({x})"
@staticmethod
def tan(x):
return f"tl.libdevice.tan({x})"
@staticmethod
def tanh(x):
return f"tl.libdevice.tanh({x})"
@staticmethod
def sigmoid(x):
return f"tl.sigmoid({x})"
@staticmethod
def libdevice_sigmoid(x):
return f"1/(1 + tl.libdevice.exp(-({x})))"
@staticmethod
def signbit(x):
# XX: This is wrong for the value -0.0 in floating point
return f"tl.libdevice.signbit({x}) if ({x}).dtype is tl.float32 else {x} < 0"
@staticmethod
def fmod(a, b):
return f"tl.libdevice.fmod({a}, {b})"
@staticmethod
def pow(a, b):
return f"tl.libdevice.pow({a}, {b})"
@staticmethod
def log(x):
return f"tl.log({x})"
@staticmethod
def libdevice_log(x):
return f"tl.libdevice.log({x})"
@staticmethod
def isinf(x):
return f"tl.libdevice.isinf({x})"
@staticmethod
def isnan(x):
return f"tl.libdevice.isnan({x})"
@staticmethod
def round(x):
return f"tl.libdevice.nearbyint({x})"
@staticmethod
def floor(x):
return f"tl.libdevice.floor({x})"
@staticmethod
def floordiv(a, b):
# See the comment in lowering.div_mode. a and b are integer type.
# Similar to div_floor_kernel_cuda in pytorch core.
# Notice that // in triton behaves as truncdiv instead of floordiv
quot = f"{a} // {b}"
rem = f"{a} % {b}"
return f"tl.where(({a} < 0) != ({b} < 0), tl.where({rem} != 0, {quot} - 1, {quot}), {quot})"
@staticmethod
def trunc(x):
return f"tl.libdevice.trunc({x})"
@staticmethod
def truncdiv(a, b):
# See the comment in lowering.div_mode. a and b are integer type.
# Notice that // in triton behaves as truncdiv instead of floordiv
return f"{a} // {b}"
@staticmethod
def ceil(x):
return f"tl.libdevice.ceil({x})"
@dataclasses.dataclass
class IterationRanges:
"""
Each range tree represents multiple sets of iteration indexing
in a single tiled dimension in the output kernel.
If you have two loops ranges one (4, 3, 2) and another (4, 6),
then the range tree will be:
4 (i0)
3 (i1) 6 (i3)
2 (i2)
Where i0 is shared between both loops, but then the split into
different indexing vars. All loop ranges must iterate over
the same number of elements.
"""
def __init__(
self,
name: str,
var_list: List[sympy.Symbol],
var_ranges: Dict[sympy.Symbol, sympy.Expr],
numel: sympy.Expr,
prefix: str,
*,
kernel: "Kernel",
divisor=sympy.Integer(1),
length=sympy.Integer(1),
):
super().__init__()
self.name = name
self.var_list = var_list
self.var_ranges = var_ranges
self.numel = numel
self.prefix = prefix
self.divisor = divisor
self.length = length
self.kernel = kernel
def is_loop(self):
return self.prefix == "r" and not self.kernel.persistent_reduction
class IterationRangesRoot(IterationRanges):
def __init__(
self,
name: str,
numel: sympy.Expr,
prefix: str,
index: int,
kernel: "Kernel",
pid_cache=None,
):
if pid_cache is None:
pid_cache = {}
super().__init__(
name=name,
var_list=[],
var_ranges={},
numel=numel,
prefix=prefix,
kernel=kernel,
)
self.index = index
# Store all the nodes in one flat list
self.nodes: Dict[sympy.Expr, IterationRangesEntry] = {}
# This is for re-ordering program ID in triton mm template
# pid_cache["tl.program_id(0)"] = pid_m
self.pid_cache: Dict[str, str] = pid_cache
def cache_clear(self):
for node in self.nodes.values():
node.cache_clear()
def lookup(self, divisor, length):
"""
Lookup a given RangeTreeEntry, creating it if needed
"""
if V.graph.sizevars.maybe_guard_equals(divisor * length, self.numel):
expr = ir.FloorDiv(sympy_symbol(f"{self.prefix}index"), divisor)
else:
expr = ir.ModularIndexing(
sympy_symbol(f"{self.prefix}index"), divisor, length
)
if expr not in self.nodes:
node = IterationRangesEntry(
f"{self.prefix}{next(V.kernel.iter_vars_count)}",
divisor,
length,
expr,
self,
)
V.kernel.range_tree_nodes[node.symbol()] = node
self.var_list.append(node.symbol())
self.var_ranges[node.symbol()] = length
self.nodes[expr] = node
return self.nodes[expr]
def construct_entries(self, lengths: List[sympy.Expr]):
divisor = sympy.Integer(1)
itervars = []
for length in reversed(lengths):
itervars.append(self.lookup(divisor, length))
divisor = divisor * length
return list(reversed(itervars))
def construct(self, lengths: List[sympy.Expr]):
return [e.symbol() for e in self.construct_entries(lengths)]
def vars_and_sizes(self, index: sympy.Expr):
"""Figure out vars from this tree used in index"""
nodes = [V.kernel.range_tree_nodes.get(s) for s in index.free_symbols]
nodes = [n for n in nodes if n and n.prefix == self.prefix]
nodes.sort(key=lambda x: V.graph.sizevars.size_hint(x.divisor))
divisor = sympy.Integer(1)
index_vars = []
sizes = []
def add(node):
nonlocal divisor
index_vars.append(node.symbol())
sizes.append(node.length)
divisor = divisor * node.length
for node in nodes:
if not V.graph.sizevars.maybe_guard_equals(node.divisor, divisor):
# fill in unused index var
add(self.lookup(divisor, ir.FloorDiv(node.divisor, divisor)))
divisor = node.divisor
add(node)
if not V.graph.sizevars.maybe_guard_equals(self.numel, divisor):
# fill in unused index var
add(self.lookup(divisor, ir.FloorDiv(self.numel, divisor)))
return list(reversed(index_vars)), list(reversed(sizes))
def ranges_code(self):
size = self.kernel.indexing_size_str(self.index, self.prefix)
return f"tl.arange(0, {self.prefix.upper()}BLOCK){size}"
def pid_cache_lookup(self, key):
if key in self.pid_cache:
return self.pid_cache[key]
return key
def codegen_header(self, code):
x = self.prefix
if self.is_loop():
code.writeline(f"{self.name} = {x}offset + {x}base")
elif x == "r" and self.kernel.persistent_reduction:
# no need to "roffset = "
code.writeline(
f"{self.name} = {self.ranges_code()}",
)
else:
pid = self.pid_cache_lookup(f"tl.program_id({self.index})")
code.writelines(
[
f"{x}offset = {pid} * {x.upper()}BLOCK",
f"{self.name} = {x}offset + {self.ranges_code()}",
]
)
code.writeline(f"{x}mask = {self.name} < {x}numel")
class IterationRangesEntry(IterationRanges):
def __init__(
self,
name: str,
divisor: sympy.Expr,
length: sympy.Expr,
expr: sympy.Expr,
parent: IterationRanges,
):
super().__init__(
name=name,
numel=parent.numel / length,
var_list=parent.var_list,
var_ranges=parent.var_ranges,
prefix=parent.prefix,
divisor=divisor,
length=length,
kernel=parent.kernel,
)
self.parent = parent
self.codegen = functools.lru_cache(None)(self._codegen)
self.expr = expr
def set_name(self, name):
self.codegen = lambda: name
self.codegen.cache_clear = lambda: None
self.name = name
def cache_clear(self):
self.codegen.cache_clear()
def writeline(self, line):
if self.is_loop():
V.kernel.indexing_code.writeline(line)
else:
# lift non-reduction stores outside loop
V.kernel.body.writeline(line)
def _codegen(self):
self.writeline(f"{self.name} = " + texpr(V.kernel.rename_indexing(self.expr)))
return self.name
def precomputed_args(self):
# for dynamic shapes, find parts of indexing expressions that have to be precomputed
precomputed_args = []
if isinstance(self.expr, sympy.Symbol):
return precomputed_args
assert isinstance(self.expr, (ir.FloorDiv, ir.ModularIndexing)), type(self.expr)
for arg in self.expr.args[1:]:
if not isinstance(arg, (sympy.Integer, sympy.Symbol)):
symbols = arg.free_symbols
if len(symbols) > 0 and all(s.name.startswith("s") for s in symbols):
precomputed_args.append(arg)
return precomputed_args
def symbol(self):
return sympy_symbol(self.name)
def __hash__(self):
return hash(self.name)
def __eq__(self, other):
return self.name == other.name
class TritonKernel(Kernel):
overrides = TritonOverrides
sexpr = pexpr
def __init__(
self,
*groups,
mutations=None,
pid_cache=None,
reduction_hint=ReductionHint.DEFAULT,
):
if pid_cache is None:
pid_cache = {}
super().__init__()
self.numels = [V.graph.sizevars.simplify(s) for s in groups]
self.mutations = mutations
self.range_trees = []
self.range_tree_nodes = {}
self.iter_vars_count = itertools.count()
self.inside_reduction = self.numels[-1] != 1
self._load_mask = None
self.body = IndentedBuffer()
self.indexing_code = IndentedBuffer()
self.suffix = IndentedBuffer()
self.outside_loop_vars = set()
self.reduction_hint = reduction_hint
self.persistent_reduction = self.should_use_persistent_reduction()
self.initialize_range_tree(pid_cache)
# define this in a closure to make cache local to object
@functools.lru_cache(None)
def simplify_indexing(index: sympy.Expr):
index = V.graph.sizevars.simplify_with_ranges(index, self.var_ranges())
for tree in self.range_trees:
index = self.combine_contiguous_dims(index, tree)
return index
self.simplify_indexing = simplify_indexing
def should_use_persistent_reduction(self):
"""
Heuristic to set self.persistent_reduction and add guards
if needed.
"""
if not (self.inside_reduction and config.triton.persistent_reductions):
return False
threshold = {
ReductionHint.INNER: 1024,
}.get(self.reduction_hint, 64)
hint = V.graph.sizevars.size_hint(self.numels[-1])
if hint > threshold:
return False
from triton import next_power_of_2
# will need to recompile if we cross a larger power of 2 boundary
V.graph.sizevars.guard_leq(self.numels[-1], next_power_of_2(hint))
return True
def initialize_range_tree(self, pid_cache):
names = ["xindex", "yindex", "zindex"][: len(self.numels) - 1] + ["rindex"]
for i in range(len(self.numels)):
self.range_trees.append(
IterationRangesRoot(
names[i], self.numels[i], names[i][0], i, self, pid_cache
)
)
for tree in self.range_trees:
# reduction indexing goes inside a loop
if not tree.is_loop():
tree.codegen_header(self.body)
if self.inside_reduction and self.range_trees[-1].is_loop():
# workaround for this issue:
# https://gist.github.com/jansel/6527126f781559095c5531f98a4235a7
self.body.writeline(f"rbase = {self.range_trees[-1].ranges_code()}")
def disable_reduction(self):
@contextlib.contextmanager
def ctx():
if self.numels[-1] == 1:
assert not self.inside_reduction
yield
return
if not self.persistent_reduction:
# calling codegen_body() will flush all the pending buffers
# and write out a reduction loop
self.codegen_body()
self.inside_reduction = False
yield
if not self.persistent_reduction:
# flush out any code before opening the next loop
self.codegen_body()
self.inside_reduction = True
return ctx()
def set_ranges(self, *lengths):
assert len(lengths) == len(self.range_trees)
return [
ranges.construct(length)
for length, ranges in zip(lengths, self.range_trees)
]
@staticmethod
def _split_iteration_ranges(
groups: List[sympy.Expr], lengths: List[List[sympy.Expr]]
):
sv = V.graph.sizevars
new_ranges = [[] for _ in groups]
remaining = [sv.simplify(g) for g in groups]
var_count = itertools.count()
def add_range(i, expr):
expr = sv.simplify(expr)
if not sv.maybe_guard_multiple_of(remaining[i], expr):
raise CantSplit()
# guard on the last item out
sv.maybe_guard_equals(remaining[i], expr)
remaining[i] = ir.FloorDiv(remaining[i], expr)
new_ranges[i].append(expr)
return next(var_count)
def make_combined(size, idx1, idx2):
def getter(flat_vars):
return size * flat_vars[idx1] + flat_vars[idx2]
return getter
return_getters_groups = []
current_group = 0
for length_group in lengths:
return_getters = []
for size in length_group:
if sv.maybe_guard_equals(size, 1):
return_getters.append(lambda _: sympy.Integer(0))
continue
while (
current_group < len(remaining)
and sv.size_hint(remaining[current_group]) == 1
):
# scroll to next group with remaining elements
current_group += 1
if sv.size_hint(size) > sv.size_hint(remaining[current_group]):
# need to break size in two
if not sv.maybe_guard_multiple_of(size, remaining[current_group]):
raise CantSplit()
size1 = remaining[current_group]
size2 = ir.FloorDiv(size, remaining[current_group])
return_getters.append(
make_combined(
size2,
add_range(current_group, size1),
add_range(current_group + 1, size2),
)
)
else:
return_getters.append(
operator.itemgetter(add_range(current_group, size))
)
return_getters_groups.append(return_getters)
assert all(
V.graph.sizevars.size_hint(s) == 1 for s in remaining
), f"failed to set ranges {remaining} {lengths}"
return new_ranges, return_getters_groups
@classmethod
def is_compatible(cls, groups: List[sympy.Expr], lengths: List[List[sympy.Expr]]):
try:
cls._split_iteration_ranges(groups, lengths)
return True
except CantSplit:
return False
def split_and_set_ranges(self, lengths: List[List[sympy.Expr]]):
"""
We may want to fuse `for i0 in s0*s1` into a tiled kernel with groups (s0, s1).
To do this we need to split up the iteration space of i0 into something like:
for i1 in s0:
for i2 in s1:
i0 = i1*s1 + i2
....
This function matches and resplits lengths to the groups of
this kernel to enable tiled + non-tiled fusions.
"""
groups = [rt.numel for rt in self.range_trees]
if not self.inside_reduction:
groups[-1] = sympy.Integer(1)
if len(lengths) == len(self.range_trees) and all(
V.graph.sizevars.simplify(sympy_product(x) - g) == 0
for x, g in zip(lengths, groups)
):
return self.set_ranges(*lengths)
new_ranges, return_getters_groups = self._split_iteration_ranges(
groups, lengths
)
itervars = list(itertools.chain(*self.set_ranges(*new_ranges)))
return [[fn(itervars) for fn in fns] for fns in return_getters_groups]
def is_indirect_indexing(self, index: sympy.Expr):
# tmpX means indirect indexing
return free_symbol_startswith(index, "tmp")
def combine_contiguous_dims(self, index: sympy.Expr, tree: IterationRangesRoot):
"""
More aggressive simplification to merge contiguous dims
"""
if isinstance(index, (sympy.Integer, sympy.Symbol)):
return index
index_vars, sizes = tree.vars_and_sizes(index)
if len(sizes) <= 1:
return index
new_sizes, reindex, prune = V.graph.sizevars._simplify_loops(
index_vars, sizes, index_prevent_reordering([index], index_vars, sizes)
)
if new_sizes == sizes:
return index
new_index_vars = tree.construct(new_sizes)
new_index = sympy_subs(index, dict(zip(index_vars, reindex(new_index_vars))))
return new_index
def indexing(
self,
index: sympy.Expr,
*,
copy_shape=None,
dense_indexing=False,
override_mask=None,
):
"""
Compute the index and mask to pass to tl.load() or tl.store()
"""
index = self.simplify_indexing(index)
index_vars = index.free_symbols
index_str = texpr(self.rename_indexing(self.codegen_indexing(index)))
mask_vars: Set[str] = set()
for var in index_vars:
if override_mask:
pass
elif var.name.startswith("tmp"):
# indirect indexing
cse_var = self.cse.varname_map[var.name]
mask_vars.update(cse_var.mask_vars)
elif var.name.startswith("s"):
pass
else:
# var is one of xN, yN or rN
assert var.name[0] in "xyr", var.name
mask_vars.add(f"{var.name[0]}mask")
need_dense = (
config.triton.dense_indexing
or dense_indexing
or self._load_mask is not None
) and index != 0
have_dense = True
have_loop_vars = False
dense_mask_vars = set()
for tree in self.range_trees:
if tree.prefix == "r" and not self.inside_reduction:
continue
if index_vars.intersection(tree.var_list):
have_loop_vars = True
have_dense = False
dense_mask_vars.add(f"{tree.prefix}mask")
if (need_dense and not have_dense) or isinstance(index, sympy.Integer):
if copy_shape:
index_str = f"{index_str} + tl.zeros({copy_shape}.shape, tl.int32)"
else:
index_str = f"{index_str} + tl.zeros({self.dense_size_str()}, tl.int32)"
if isinstance(index, sympy.Integer):
return index_str, set(), "None"
else:
mask_vars = dense_mask_vars
elif not have_loop_vars and copy_shape:
mask_vars = dense_mask_vars
index_str = f"{index_str} + tl.zeros({copy_shape}.shape, tl.int32)"
if override_mask:
mask_vars = {override_mask}
if self._load_mask:
mask_vars.add(self._load_mask)
self.filter_masks(mask_vars)
mask_str = " & ".join(sorted(map(str, mask_vars))) if mask_vars else "None"
return index_str, mask_vars, mask_str
def filter_masks(self, mask_vars):
for tree in self.range_trees:
# Masks are superfluous if we only have one element
if V.graph.sizevars.maybe_guard_equals(tree.numel, 1):
mask_vars.discard(f"{tree.prefix}mask")
def var_ranges(self):
return dict(
itertools.chain.from_iterable(
tree.var_ranges.items() for tree in self.range_trees
)
)
def codegen_indexing(self, expr: sympy.Expr):
expr = V.graph.sizevars.simplify_with_ranges(expr, self.var_ranges())
for sym in sorted(expr.free_symbols, key=str):
if sym in self.range_tree_nodes:
# if indexing expression is complicated, we precompute it on the host side
# and send the result as a kernel argument
replacements = {}
for ps in self.range_tree_nodes[sym].precomputed_args():
replacements[ps] = V.graph.sizevars.lookup_precomputed_size(ps)
if len(replacements) > 0:
self.range_tree_nodes[sym].expr = sympy_subs(
self.range_tree_nodes[sym].expr, replacements
)
self.range_tree_nodes[sym].codegen()
return expr
@contextlib.contextmanager
def mask_loads(self, mask):
"""Context manager to add an additional mask to tl.load/store"""
prior = self._load_mask
if prior:
mask = self.cse.generate(self.compute, f"{mask} & {prior}")
self._load_mask = mask
with self.swap_buffers(self.compute, self.compute):
# TODO(jansel): do we need a reshape here?
yield mask
self._load_mask = prior
def load(self, name: str, index: sympy.Expr):
var = self.args.input(name)
indirect_indexing = self.is_indirect_indexing(index)
original_index = index
index, mask_vars, mask = self.indexing(index)
if "rmask" in mask and not self.persistent_reduction:
# This eviction policy heuristic is untested.
# ptillet suggested we should try only doing this for
# the first N-1 loops and not for the final loop.
ep = ", eviction_policy='evict_last'"
else:
ep = ""
# "other" below is a workaround for https://github.com/openai/triton/issues/737
# for bool, even though it's likely subject to the same bug, setting `other` leads
# to LLVM errors so we are skipping it for now
if ("tmp" in mask or "rmask" in mask) and V.graph.get_dtype(name) != torch.bool:
other = ", other=0"
else:
other = ""
append_broadcast = None
if V.graph.is_unspec_arg(name):
line = var
else:
if isinstance(original_index, sympy.Integer):
dense_size = self.dense_size_str()
line = f"tl.load({var} + ({original_index}))"
append_broadcast = dense_size
else:
line = f"tl.load({var} + ({index}), {mask}{ep}{other})"
if V.graph.get_dtype(name) in (torch.float16, torch.bfloat16):
line += ".to(tl.float32)"
if (
self.inside_reduction
and not self.persistent_reduction
and "rmask" not in mask
and "tmp" not in mask
and not indirect_indexing
):
# can lift a common load outside of reduction loop
# One exception is when this is an indirect_load.
result_var = self.cse.generate(
self.body, line, append_broadcast=append_broadcast
)
else:
result_var = self.cse.generate(
self.loads, line, append_broadcast=append_broadcast
)
result_var.mask_vars = mask_vars
if not self.inside_reduction or "rmask" not in mask:
self.outside_loop_vars.add(result_var)
return result_var
def store(self, name, index, value, mode=None):
var = self.args.output(name)
index, mask_vars, mask = self.indexing(index, dense_indexing=True)
if mode is None:
line = f"tl.store({var} + ({index}), {value}, {mask})"
elif mode == "atomic_add":
line = f"tl.atomic_add({var} + ({index}), {value}, {mask})"
else:
raise NotImplementedError(f"store mode={mode}")
self.stores.writeline(name, line)
if not self.inside_reduction:
self.outside_loop_vars.add(value)
def reduction(self, name, dtype, src_dtype, reduction_type, index, value):
assert self.inside_reduction
default = triton_constant(ir.Reduction.default_value(reduction_type, src_dtype))
masks = {f"{tree.prefix}mask" for tree in self.range_trees}
self.filter_masks(masks)
masks = sorted(masks)
if self._load_mask:
masks.append(self._load_mask)
sizes = [":" for _ in self.range_trees]
sizes[-1] = "None"
reduction_range_prefix = self.range_trees[-1].prefix
reduction_sizes = ["None" for _ in self.range_trees]
reduction_sizes[-1] = ":"
if reduction_type == "any":
reduction_type = "max"
dim = len(self.range_trees) - 1
result_var = self.cse.newvar()
result_var.mask_vars = {var for var in masks if var[0] != "r"}
if self.persistent_reduction:
cond = " & ".join(masks)
masked_value = self.cse.generate(
self.compute, f"tl.where({cond}, {value}, {default})"
)
result_var = self.cse.generate(
self.compute,
f"tl.{reduction_type}({masked_value}, {dim})[{', '.join(sizes)}]",
)
elif (src_dtype, reduction_type, value) not in self.cse.reduction_cache:
self.cse.reduction_cache[(src_dtype, reduction_type, value)] = result_var
accumulator = f"_{result_var}"
default_value = f" + {default}" if default != 0 else ""
self.body.writeline(
f"{accumulator} = tl.zeros({self.dense_size_str()}, {triton_compute_type(src_dtype)}){default_value}"
)
accumulator_index = None
if reduction_type in {"argmax", "argmin"}:
accumulator_index = f"_{result_var}_index"
self.body.writeline(
f"{accumulator_index} = tl.zeros({self.dense_size_str()}, tl.int64)"
)
updated = value
if reduction_type in {"min", "argmin"}:
masks.append(f"({accumulator} > {value})")
elif reduction_type in {"max", "argmax"}:
masks.append(f"({accumulator} < {value})")
elif reduction_type == "sum":
updated = f"{accumulator} + {value}"
else:
raise NotImplementedError(f"reduction_type {reduction_type}")
cond = " & ".join(masks)
if accumulator_index:
# argmax or argmin
self.compute.writeline(
f"{accumulator_index} = tl.where({cond}, {reduction_range_prefix}index, {accumulator_index})",
)
self.compute.writeline(
f"{accumulator} = tl.where({cond}, {updated}, {accumulator})"
)
if accumulator_index:
# argmax, argmin
self.suffix.writelines(
[
f"{accumulator_index}_reduce = "
f"tl.{reduction_type}({accumulator}, {dim})[{', '.join(sizes)}].to(tl.int32)",
f"{accumulator_index}_mask = tl.arange(0, {reduction_range_prefix.upper()}BLOCK)"
f"[{', '.join(reduction_sizes)}] == {accumulator_index}_reduce",
f"{result_var} = tl.sum("
f"tl.where({accumulator_index}_mask, {accumulator_index}, 0), {dim})[{', '.join(sizes)}]",
]
)
else:
self.suffix.writeline(
f"{result_var} = tl.{reduction_type}({accumulator}, {dim})[{', '.join(sizes)}]"
)
else:
var_name = self.cse.reduction_cache[(src_dtype, reduction_type, value)]
self.suffix.writeline(f"{result_var} = {var_name}")
result_var.mask_vars = var_name.mask_vars
self.inside_reduction = False
index, mask_vars, mask = self.indexing(index)
assert "rmask" not in index
self.inside_reduction = True
self.outside_loop_vars.add(result_var)
self.cse.store_cache[name] = result_var
if name not in V.graph.removed_buffers:
var = self.args.output(name)
self.suffix.writeline(
DeferredLine(name, f"tl.store({var} + {index}, {result_var}, {mask})")
)
def codegen_body(self):
"""
Concat output code from index_code, loads, compute, stores,
suffix into self.body.
For pointwise kernels, this is called just once at the end.
For reduction kernels, this generates a loop over the reduction
axis.
"""
if not (
self.indexing_code
or self.loads
or self.stores
or self.compute
or self.suffix
):
return
if self.inside_reduction and not self.persistent_reduction:
self.body.writeline("for roffset in range(0, rnumel, RBLOCK):")
with self.body.indent():
# last range tree is always reduction
self.range_trees[-1].codegen_header(self.body)
self.body.splice(self.indexing_code)
self.body.splice(self.loads)
self.body.splice(self.compute)
self.body.splice(self.stores)
# invalidate any caches that came from inside the reduction loop
self.cse.invalidate(self.outside_loop_vars)
self.range_trees[-1].cache_clear()
else:
self.body.splice(self.indexing_code)
self.body.splice(self.loads)
self.body.splice(self.compute)
self.body.splice(self.stores)
self.body.splice(self.suffix)
self.indexing_code.clear()
self.loads.clear()
self.compute.clear()
self.stores.clear()
self.suffix.clear()
def codegen_kernel(self, name=None):
from triton import next_power_of_2
code = IndentedBuffer()
size_hints = [
next_power_of_2(V.graph.sizevars.size_hint(numel)) for numel in self.numels
]
if self.persistent_reduction:
assert self.inside_reduction
heuristics = "persistent_reduction"
elif self.inside_reduction:
heuristics = "reduction"
else:
size_hints.pop()
heuristics = "pointwise"
if name is None:
code.splice(
f"""
import triton
import triton.language as tl
from torch._inductor.ir import ReductionHint
from torch._inductor.ir import TileHint
from torch._inductor.triton_ops.autotune import {heuristics}
from torch._inductor.utils import instance_descriptor
"""
)
argdefs, _, signature = self.args.python_argdefs()
# maps actual expression to SizeArg if its in sizevars replacements
for i, arg in enumerate(signature):
if (
isinstance(arg, SizeArg)
and arg.expr in V.graph.sizevars.inv_precomputed_replacements
):
signature[i] = SizeArg(
arg.name, V.graph.sizevars.inv_precomputed_replacements[arg.expr]
)
mutated_args = set()
for mutation in self.mutations:
if mutation in self.args.input_buffers:
mutated_args.add(self.args.input_buffers[mutation])
if mutation in self.args.inplace_buffers:
mutated_args.add(self.args.inplace_buffers[mutation].inner_name)
if mutation in self.args.output_buffers:
mutated_args.add(self.args.output_buffers[mutation])
mutated_args = sorted(mutated_args)
triton_meta = {
"signature": dict(enumerate(map(signature_of, signature))),
"device": V.graph.scheduler.current_device.index,
"constants": {},
"mutated_arg_names": mutated_args,
}
for tree in self.range_trees:
if tree.prefix != "r" or self.inside_reduction:
sizearg = SizeArg(f"{tree.prefix}numel", tree.numel)
signature.append(sizearg)
triton_meta["signature"][len(argdefs)] = signature_of(sizearg)
argdefs.append(f"{tree.prefix}numel")
# constexpr version causes issues, see
# https://github.com/pytorch/torchdynamo/pull/1362
# triton_meta["constants"][len(argdefs)] = V.graph.sizevars.size_hint(
# tree.numel
# )
# argdefs.append(f"{tree.prefix}numel: tl.constexpr")
triton_meta["configs"] = [config_of(signature)]
for tree in self.range_trees:
if tree.prefix != "r" or self.inside_reduction:
argdefs.append(f"{tree.prefix.upper()}BLOCK : tl.constexpr")
if self.inside_reduction:
reduction_hint = self.reduction_hint
heuristics_line = f"""
@{heuristics}(
size_hints={size_hints!r},
reduction_hint={reduction_hint},
filename=__file__,
meta={triton_meta!r}
)
@triton.jit
"""
else:
tile_hint = ""
if len(size_hints) == 2:
if len(signature) == 4: # input, output and 2 args
tile_hint = "tile_hint=TileHint.SQUARE,"
else:
tile_hint = "tile_hint=TileHint.DEFAULT,"
heuristics_line = f"""
@{heuristics}(size_hints={size_hints!r}, {tile_hint}filename=__file__, meta={triton_meta!r})
@triton.jit
"""
code.splice(heuristics_line)
code.writeline(f"def {name or 'KERNEL_NAME'}({', '.join(argdefs)}):")
self.codegen_body()
with code.indent():
if not dynamo_config.dynamic_shapes:
self.codegen_static_numels(code)
for old, new in self.args.aliases():
code.writeline(f"{old} = {new}")
code.splice(self.body)
if name is not None:
return code.getvalue()
wrapper = IndentedBuffer()
wrapper.writeline("async_compile.triton('''")
wrapper.splice(code.getvalue(), strip=True)
wrapper.writeline("''')")
return wrapper.getvalue()
def codegen_template_wrapper(self, src_code):
wrapper = IndentedBuffer()
wrapper.writeline("async_compile.triton('''")
wrapper.splice(src_code, strip=True)
wrapper.writeline("''')")
return wrapper.getvalue()
def codegen_static_numels(self, code):
"""
We get a small speedup from hard coding numels if they are static.
"""
for tree in self.range_trees:
if tree.prefix != "r" or self.inside_reduction:
if isinstance(V.graph.sizevars.simplify(tree.numel), sympy.Integer):
code.writeline(
f"{tree.prefix}numel = {V.graph.sizevars.size_hint(tree.numel)}"
)
elif not dynamo_config.dynamic_shapes:
code.writeline(
f"{tree.prefix}numel = {V.graph.sizevars.size_hint(tree.numel)} # dynamic_shapes=False"
)
def indexing_size_str(self, i=None, x=None):
sizes = ["None"] * (len(self.range_trees) - int(self.numels[-1] == 1))
if i is not None:
sizes[i] = ":"
return f"[{', '.join(sizes)}]"
def dense_size_str(self):
sizes = []
for tree in self.range_trees:
if tree.prefix != "r" or self.inside_reduction:
sizes.append(f"{tree.prefix.upper()}BLOCK")
elif tree.prefix == "r" and tree.numel != 1:
sizes.append("1")
return f"[{', '.join(sizes)}]"
def call_kernel(self, code, name: str):
_, call_args, _ = self.args.python_argdefs()
# dynamo wraps unspec variable as 0d CPU tensor, need convert to scalar
for i in range(len(call_args)):
if V.graph.is_unspec_arg(call_args[i]):
call_args[i] = call_args[i] + ".item()"
grid = []
# TODO(jansel): if there are constants, we shouldn't bother passing them as args
for tree in self.range_trees:
if isinstance(tree.numel, (sympy.Integer, sympy.Symbol)):
expr = pexpr(tree.numel)
else:
expr = f"{name}_{tree.prefix}numel"
code.writeline(f"{expr} = {pexpr(tree.numel)}")
if tree.prefix != "r" or self.inside_reduction:
call_args.append(expr)
if tree.prefix != "r":
grid.append(expr)
call_args = ", ".join(call_args)
stream_name = code.write_get_cuda_stream(V.graph.scheduler.current_device.index)
code.writeline(
f"{name}.run({call_args}, grid=grid({', '.join(grid)}), stream={stream_name})"
)
def create_cse_var(self, *args, **kwargs):
return TritonCSEVariable(*args, **kwargs)
class TritonScheduling:
def __init__(self, scheduler):
self.scheduler = scheduler
def group_fn(self, sizes):
return tuple(V.graph.sizevars.simplify(sympy_product(s)) for s in sizes)
def can_fuse(self, node1, node2):
"""
Hook called by Scheduler to determine if the Triton backend
can fuse node1 and node2. These nodes might already be
FusedSchedulerNodes.
"""
_, (numel1, rnumel1) = node1.group
_, (numel2, rnumel2) = node2.group
if node1.is_reduction() and node2.is_reduction():
return numel1 == numel2 and rnumel1 == rnumel2
if not node1.is_reduction() and not node2.is_reduction():
if not (numel1 == numel2 and rnumel1 == rnumel2):
return False
if node1.is_template():
return True # skip checks for compatible tiling
# check for a bad combined tiling
tiling1 = self.select_tiling(node1.get_nodes(), numel1, rnumel1)
tiling2 = self.select_tiling(node2.get_nodes(), numel1, rnumel1)
tiling3 = self.select_tiling(
node1.get_nodes() + node2.get_nodes(), numel1, rnumel1
)
if config.triton.tiling_prevents_pointwise_fusion:
if len(tiling1) > 2:
if len(tiling2) > 2:
return tiling1 == tiling2 == tiling3
else:
return tiling1 == tiling3
elif len(tiling2) > 2:
return tiling2 == tiling3
return True
if not node1.is_reduction() and node2.is_reduction():
assert rnumel1 == 1 and rnumel2 != 1
if numel1 == numel2 * rnumel2:
if not all(
TritonKernel.is_compatible((numel2, rnumel2), n.get_ranges())
for n in node1.get_nodes()
):
return False
if (
config.triton.tiling_prevents_reduction_fusion
and not node1.is_template()
):
return self.select_tiling(node1.get_nodes(), numel1) in (
(numel1, 1),
(numel2, rnumel2, 1),
)
return True
return numel1 == numel2
assert node1.is_reduction() and not node2.is_reduction()
# swap args to hit the case above
return self.can_fuse_horizontal(node2, node1)
can_fuse_vertical = can_fuse
can_fuse_horizontal = can_fuse
def codegen_nodes(self, nodes):
"""
Given a set of pre-fused nodes, generate a Triton kernel.
"""
_, (numel, rnumel) = max(nodes, key=lambda x: int(x.is_reduction())).group
node_schedule = []
current_loop_writes = set()
is_current_reductions = set()
done = set()
def fits_in_main_body(n):
_, (node_numel, node_rnumel) = n.group
return (node_numel == numel and node_rnumel == rnumel) or (
node_numel == numel * rnumel and node_rnumel == 1
)
def fits_outside_reduction(n):
_, (node_numel, node_rnumel) = n.group
return node_numel == numel and node_rnumel == 1 and rnumel != 1
@contextlib.contextmanager
def end_current_reduction_loop():
if current_loop_writes:
# flush out any other runnable nodes to reduce number of loops
for other_node in nodes[index + 1 :]:
if (
node not in done
and fits_in_main_body(other_node)
and not (
current_loop_writes & other_node.recursive_predecessors
)
):
done.add(node)
current_loop_writes.add(node.get_name())
is_current_reductions.add(node.is_reduction())
node_schedule.append(node)
if node_schedule and node_schedule[-1] is EnableReduction:
node_schedule.pop()
else:
node_schedule.append(DisableReduction)
yield
node_schedule.append(EnableReduction)
current_loop_writes.clear()
is_current_reductions.clear()
for index, node in enumerate(nodes):
if node in done:
continue
done.add(node)
def requires_closing_previous_reduction(node, node_schedule):
if rnumel == 1:
return False
if not current_loop_writes & node.recursive_predecessors:
return False
assert node_schedule and not isinstance(
node_schedule[-1], (EnableReduction, DisableReduction)
)
return True in is_current_reductions
if fits_in_main_body(node):
if requires_closing_previous_reduction(node, node_schedule):
with end_current_reduction_loop():
pass # need to start a new reduction loop
current_loop_writes.add(node.get_name())
is_current_reductions.add(node.is_reduction())
node_schedule.append(node)
elif fits_outside_reduction(node):
with end_current_reduction_loop():
node_schedule.append(node)
else:
raise NotImplementedError(
f"unexpected group: ({numel}, {rnumel}) != {node.group[1]}"
)
if dynamo_config.output_code:
log.info("schedule: %s", node_schedule)
return self.codegen_node_schedule(node_schedule, numel, rnumel)
@staticmethod
def reduction_hint(node):
assert node.is_reduction()
if all(
dep.is_contiguous()
for dep in itertools.chain(node.read_writes.reads, node.read_writes.writes)
):
return ReductionHint.INNER
else:
return node.node.data.reduction_hint
def codegen_node_schedule(self, node_schedule, numel, reduction_numel):
tiled_groups = self.select_tiling(node_schedule, numel, reduction_numel)
reductions = list(
filter(
lambda n: n not in (EnableReduction, DisableReduction)
and n.is_reduction(),
node_schedule,
)
)
if len(reductions) > 0:
hints = [self.reduction_hint(n) for n in reductions]
if hints.count(hints[0]) == len(hints):
reduction_hint_val = hints[0]
else:
reduction_hint_val = ReductionHint.DEFAULT
else:
reduction_hint_val = ReductionHint.DEFAULT
mutations = set()
for node in node_schedule:
if hasattr(node, "get_mutations"):
mutations.update(node.get_mutations())
with TritonKernel(
*tiled_groups, reduction_hint=reduction_hint_val, mutations=mutations
) as kernel:
stack = contextlib.ExitStack()
for node in node_schedule:
if node not in (EnableReduction, DisableReduction):
node.mark_run()
for node in node_schedule:
if node is DisableReduction:
stack.enter_context(kernel.disable_reduction())
elif node is EnableReduction:
stack.close()
else:
# TODO - mostly works but needs a couple fixes
if not dynamo_config.dynamic_shapes:
# TODO - use split ranges ?
indexing_dtype_strength_reduction(node._body)
index_vars = kernel.split_and_set_ranges(node.get_ranges())
node.codegen(index_vars)
src_code = kernel.codegen_kernel()
kernel_name = self.define_kernel(src_code, node_schedule)
kernel.call_kernel(V.graph.wrapper_code, kernel_name)
self.scheduler.free_buffers()
def define_kernel(self, src_code, node_schedule):
wrapper = V.graph.wrapper_code
if src_code in wrapper.kernels:
kernel_name = wrapper.kernels[src_code]
else:
fused_name = (
get_fused_kernel_name(node_schedule)
if config.triton.descriptive_kernel_names
else ""
)
kernel_name = "_".join(["triton", fused_name, wrapper.next_kernel_suffix()])
wrapper.kernels[src_code] = kernel_name
subs_name = kernel_name if config.triton.ordered_kernel_names else "triton_"
src_code = src_code.replace("KERNEL_NAME", subs_name)
# TODO(voz): Ostensibly, we should not need this. But there are cases where C++ codegen does
# not use BracesBuffer, so we have no good indicator of a C++ buffer atm.
src_code = src_code.replace("#pragma CMT", "#")
wrapper.define_kernel(kernel_name, src_code)
return kernel_name
def codegen_template(self, template_node, epilogue_nodes):
"""
Codegen a triton template
"""
_, (numel, rnumel) = template_node.group
assert rnumel == 1
kernel, render = template_node.node.make_kernel_render(template_node.node)
with kernel:
for node in [template_node, *epilogue_nodes]:
node.mark_run()
render() # warmup run to get the args right
for node in epilogue_nodes:
node.codegen(kernel.split_and_set_ranges(node.get_ranges()))
src_code = kernel.codegen_template_wrapper(render())
kernel_name = self.define_kernel(src_code, [template_node, *epilogue_nodes])
kernel.call_kernel(V.graph.wrapper_code, kernel_name)
self.scheduler.free_buffers()
def codegen_sync(self):
V.graph.wrapper_code.writeline("torch.cuda.synchronize()")
@staticmethod
@functools.lru_cache(32)
def candidate_tilings(node):
ranges, reduction_ranges = node.get_ranges()
if len(ranges) <= 1:
return ()
rw = node.pointwise_read_writes()
assert len(rw.range_vars) == len(ranges)
deps = [
dep
for dep in itertools.chain(rw.reads, rw.writes)
if dep.name not in V.graph.removed_buffers
]
write_names = {dep.name for dep in rw.writes}
tilings = []
for dep in deps:
strides = V.graph.sizevars.stride_hints(dep.index, rw.range_vars)
assert len(strides) == len(ranges)
try:
split = strides.index(1) + 1
if split == len(ranges):
continue
if all(s == 0 for s in strides[split:]):
# if this is a broadcasted tensor and all dimensions after split are broadcast,
# this is not a real split
continue
except ValueError:
continue
tiled_groups = (
V.graph.sizevars.simplify(sympy_product(ranges[:split])),
V.graph.sizevars.simplify(sympy_product(ranges[split:])),
)
# score by number of elements
score = V.graph.sizevars.size_hint(
sympy_product(
size for size, stride in zip(ranges, strides) if stride != 0
)
)
if dep.name in write_names:
# ngimel said contiguous writes is more important than reads
score *= 2
if CandidateTiling.is_good_size(tiled_groups[0]):
score *= 2
if CandidateTiling.is_good_size(tiled_groups[1]):
score *= 2
if (
V.graph.sizevars.size_hint(
score - sympy_product(itertools.chain(ranges, reduction_ranges))
)
>= 0
):
tilings.append(CandidateTiling(tiled_groups, score, dep.name))
return tilings
@classmethod
def select_tiling(cls, node_schedule, numel, reduction_numel=sympy.Integer(1)):
"""
Heuristics to decide how to tile kernels.
Currently, we tile based on stride-1 dimensions.
Returns:
`(tile1, tile2, reduction_numel)` s.t. `tile1 * tile2 == numel`
"""
if reduction_numel != 1 or config.triton.max_tiles <= 1:
# TODO(jansel): should we tile reductions?
return (numel, reduction_numel)
seen_names = set()
candidate_tiles = collections.Counter()
for node in EnableReduction.filter(node_schedule):
for tiling in cls.candidate_tilings(node):
if tiling.name in seen_names:
continue
seen_names.add(tiling.name)
candidate_tiles[tiling.tiling] += tiling.score
ranked_tilings = [tiling for tiling, score in candidate_tiles.most_common()]
if config.triton.max_tiles >= 3:
# Add one 3D tiling choice
for i in range(1, len(ranked_tilings)):
a0, a1 = ranked_tilings[0]
b0, b1 = ranked_tilings[i]
if V.graph.sizevars.size_hint(a1 - b1) == 0:
continue
if V.graph.sizevars.size_hint(a1 - b1) < 0:
# swap so a0 is bigger
a0, a1 = ranked_tilings[i]
b0, b1 = ranked_tilings[0]
assert V.graph.sizevars.size_hint(a1 - b1) > 0
if V.graph.sizevars.maybe_guard_multiple_of(a1, b1):
tiling = (a0, ir.FloorDiv(a1, b1), b1)
ranked_tilings = [tiling] + ranked_tilings
break # only 1 choice for now
for tiled_groups in ranked_tilings:
new_groups = (*tiled_groups, reduction_numel)
if all(
TritonKernel.is_compatible(new_groups, node.get_ranges())
for node in node_schedule
if isinstance(node, scheduler.SchedulerNode)
):
return new_groups
return (numel, reduction_numel)
def flush(self):
pass
@dataclasses.dataclass
class CandidateTiling:
tiling: List[sympy.Expr]
score: int # higher is better
name: str = None
@staticmethod
def is_good_size(s):
"""Somewhat arbitrary heuristic used to boost scores for some sizes"""
s = V.graph.sizevars.size_hint(s)
return s >= 32 and (s % 32 == 0)
class DisableReduction:
"""
Marker to invoke `kernel.disable_reduction()`. This closes a
reduction loop and allows for pointwise ops to occur on the output
of a reduction.
"""
class EnableReduction:
"""
Marker to end a DisableReduction block.
"""
@staticmethod
def filter(node_schedule):
"""
Get the nodes from node_schedule skipping those in a
DisableReduction block.
"""
disabled = False
for node in node_schedule:
if node in (EnableReduction, DisableReduction):
# Don't tile stuff outside the main reduction loop
disabled = node is DisableReduction
elif disabled:
pass
else:
yield node
class CantSplit(Exception):
pass