import torch
from ..lowering import register_lowering
from ..select_algorithm import (
autotune_select_algorithm,
ExternKernelChoice,
TritonTemplate,
)
from ..utils import ceildiv as cdiv, use_triton_template
from .mm_common import addmm_epilogue, mm_args, mm_configs, mm_options
aten = torch.ops.aten
def bmm_grid(b, m, n, meta):
return (cdiv(m, meta["BLOCK_M"]) * cdiv(n, meta["BLOCK_N"]), b, 1)
bmm_template = TritonTemplate(
name="bmm",
grid=bmm_grid,
source=r"""
{{def_kernel("A", "B")}}
M = {{size("A", -2)}}
N = {{size("B", -1)}}
K = {{size("A", -1)}}
stride_aq = {{stride("A", 0)}}
stride_am = {{stride("A", 1)}}
stride_ak = {{stride("A", 2)}}
stride_bq = {{stride("B", 0)}}
stride_bk = {{stride("B", 1)}}
stride_bn = {{stride("B", 2)}}
# based on triton.ops.matmul
pid = tl.program_id(0)
grid_m = (M + BLOCK_M - 1) // BLOCK_M
grid_n = (N + BLOCK_N - 1) // BLOCK_N
# re-order program ID for better L2 performance
width = GROUP_M * grid_n
group_id = pid // width
group_size = min(grid_m - group_id * GROUP_M, GROUP_M)
pid_m = group_id * GROUP_M + (pid % group_size)
pid_n = (pid % width) // (group_size)
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
ram = tl.max_contiguous(tl.multiple_of(rm % M, BLOCK_M), BLOCK_M)
rbn = tl.max_contiguous(tl.multiple_of(rn % N, BLOCK_N), BLOCK_N)
rk = tl.arange(0, BLOCK_K)
idx_q = tl.program_id(1) # batch dimension for BMM
A = A + (ram[:, None] * stride_am + rk[None, :] * stride_ak + idx_q*stride_aq)
B = B + (rk[:, None] * stride_bk + rbn[None, :] * stride_bn + idx_q*stride_bq)
acc = tl.zeros((BLOCK_M, BLOCK_N), dtype=ACC_TYPE)
for k in range(K, 0, -BLOCK_K):
if EVEN_K:
a = tl.load(A)
b = tl.load(B)
else:
a = tl.load(A, mask=rk[None, :] < k, other=0.)
b = tl.load(B, mask=rk[:, None] < k, other=0.)
acc += tl.dot(a, b, allow_tf32=ALLOW_TF32)
A += BLOCK_K * stride_ak
B += BLOCK_K * stride_bk
# rematerialize rm and rn to save registers
rm = pid_m * BLOCK_M + tl.arange(0, BLOCK_M)
rn = pid_n * BLOCK_N + tl.arange(0, BLOCK_N)
idx_q = tl.program_id(1) # batch dimension for BMM
idx_m = rm[:, None]
idx_n = rn[None, :]
mask = (idx_m < M) & (idx_n < N)
# inductor generates a suffix
{{store_output(("idx_q", "idx_m", "idx_n"), "acc", "mask")}}
""",
)
aten_bmm = ExternKernelChoice(torch.bmm, "at::bmm_out")
aten_baddbmm = ExternKernelChoice(torch.baddbmm, "at::baddbmm_out")
@register_lowering(aten.bmm)
def tuned_bmm(mat1, mat2, *, layout=None):
m, n, k, layout, mat1, mat2 = mm_args(mat1, mat2, layout=layout)
# options to tune from
choices = [aten_bmm.bind((mat1, mat2), layout)]
if use_triton_template(layout):
for config in mm_configs():
choices.append(
bmm_template.generate(
(mat1, mat2),
layout,
**mm_options(config, k, layout),
)
)
return autotune_select_algorithm(choices, [mat1, mat2], layout)
# Don't register this since it is slower than decomposing it
# @register_lowering(aten.baddbmm)
def tuned_baddbmm(inp, mat1, mat2, *, alpha=1, beta=1, layout=None):
m, n, k, layout, mat1, mat2, inp = mm_args(mat1, mat2, inp, layout=layout)
# options to tune from
choices = [aten_baddbmm.bind((inp, mat1, mat2), layout, alpha=alpha, beta=beta)]
if use_triton_template(layout):
for config in mm_configs():
choices.append(
bmm_template.generate(
(inp, mat1, mat2),
layout,
**mm_options(config, k, layout),
prefix_args=1,
epilogue_fn=addmm_epilogue(layout.dtype, alpha, beta),
)
)
return autotune_select_algorithm(choices, [inp, mat1, mat2], layout)