import collections
import contextlib
import functools
import glob
import itertools
import logging
import math
import operator
import os
import shutil
import tempfile
import textwrap
import time
from io import StringIO
from typing import Any, Dict, List, Optional, Union
from unittest import mock
import sympy
import torch
from torch.fx.immutable_collections import immutable_dict, immutable_list
from . import config, config as inductor_config
from .cuda_properties import get_device_capability
log = logging.getLogger(__name__)
VarRanges = Dict[sympy.Expr, sympy.Expr]
try:
from triton.testing import do_bench
except ImportError:
def do_bench(*args, **kwargs):
raise NotImplementedError("requires Triton")
@functools.lru_cache(None)
def has_triton():
if not torch.cuda.is_available():
return False
try:
import triton
return triton is not None and get_device_capability() >= (7, 0)
except ImportError:
return False
@functools.lru_cache(None)
def has_torchvision_roi_align():
try:
from torchvision.ops import roi_align # noqa: F401
return roi_align is not None and hasattr(
getattr(torch.ops, "torchvision", None), "roi_align"
)
except ImportError:
return False
def conditional_product(*args):
return functools.reduce(operator.mul, [x for x in args if x])
def sympy_product(it):
return functools.reduce(operator.mul, it, sympy.Integer(1))
def sympy_dot(seq1, seq2):
assert len(seq1) == len(seq2)
return sympy.expand(sum(a * b for a, b in zip(seq1, seq2)))
def unique(it):
return {id(x): x for x in it}.values()
def ceildiv(numer: int, denom: int):
assert isinstance(numer, int) and isinstance(denom, int)
return -(numer // -denom)
def convert_shape_to_inductor(lst: List[Union[int, torch.SymInt]]) -> List[sympy.Expr]:
"""
Gets the shape and stride of a tensor. For non-symbolic tensors, this is
trivial. But for symbolic tensors, we need to map from SymIntNode into
sympy.Expr.
"""
return [
i.node.expr if isinstance(i, torch.SymInt) else sympy.Integer(i) for i in lst
]
def convert_shape_to_symint(
lst: List[Union[int, sympy.Expr]]
) -> List[Union[int, torch.SymInt]]:
"""
Takes a list of shapes from Inductor and converts them into symints (or just
ints if all shapes are static).
"""
from .virtualized import V
return [
i
if isinstance(i, int)
else int(i)
if isinstance(i, sympy.Integer)
else V.graph.sizevars.shape_env.create_symintnode(i, hint=None)
for i in lst
]
def gen_gm_and_inputs(target, args, kwargs):
g = torch.fx.Graph()
g_args = []
a_args = []
for n, arg in enumerate(args):
if isinstance(arg, torch.Tensor):
g_args.append(g.placeholder(f"arg{n}"))
a_args.append(arg)
else:
g_args.append(arg)
assert all(not isinstance(x, torch.Tensor) for x in kwargs.values())
node = g.call_function(target, tuple(g_args), kwargs)
if (
len(target._schema.returns) == 1
and str(target._schema.returns[0].type) == "Tensor"
):
node = (node,)
g.output(node)
gm = torch.fx.GraphModule({}, g)
return gm, a_args
def synchronize():
if torch.cuda.is_available():
torch.cuda.synchronize()
def timed(model, example_inputs, times=1):
synchronize()
torch.manual_seed(1337)
t0 = time.perf_counter()
for _ in range(times):
result = model(*example_inputs)
synchronize()
t1 = time.perf_counter()
# GC the result after timing
assert result is not None
return t1 - t0
def print_performance(fn, args=(), times=10, repeat=10, baseline=1.0):
timings = torch.tensor([timed(fn, args, times) for _ in range(repeat)])
took = torch.median(timings)
print(f"{took/baseline:.6f}")
return took
immutable_dict.__hash__ = lambda self: hash(tuple(self.items()))
immutable_list.__hash__ = lambda self: hash(tuple(self))
def freeze_inputs(f):
"""
Useful for wrapping lists in tuples for caching purposes
"""
def freeze_value(x):
if isinstance(x, (immutable_dict, immutable_list)):
return x
if isinstance(x, list):
return immutable_list(x)
if isinstance(x, dict):
return immutable_dict(x)
return x
@functools.wraps(f)
def wrapped(*args):
args = [freeze_value(x) for x in args]
return f(*args)
wrapped.cache_info = f.cache_info
return wrapped
def precompute_method(obj: Any, method: str):
"""Replace obj.method() with a new method that returns a precomputed constant."""
result = getattr(obj, method)()
setattr(obj, method, lambda: result)
def precompute_methods(obj: Any, methods: List[str]):
"""Replace methods with new methods that returns a precomputed constants."""
for method in methods:
precompute_method(obj, method)
def cmp(a, b):
return int(a > b) - int(a < b)
def cache_on_self(fn):
key = f"__{fn.__name__}_cache"
@functools.wraps(fn)
def wrapper(self):
if not hasattr(self, key):
setattr(self, key, fn(self))
return getattr(self, key)
return wrapper
def get_fused_kernel_name(node_schedule):
return "_".join(
["fused"]
+ sorted(
[
str(origin.name)
for origin in functools.reduce(
operator.or_,
[
node.node.origins
for node in node_schedule
if hasattr(node, "node")
],
)
if origin.op == "call_function"
]
)[0 : config.kernel_name_max_ops]
)
def gather_origins(args, kwargs):
import itertools
from .ir import ComputedBuffer, IRNode
def is_unrealized_node(n):
return isinstance(n, IRNode) and not isinstance(n, ComputedBuffer)
kwarg_origins = [val.origins for val in kwargs.values() if is_unrealized_node(val)]
arg_origins = [arg.origins for arg in args if is_unrealized_node(arg)]
return set(itertools.chain(*arg_origins, *kwarg_origins))
def sympy_str(expr: sympy.Expr):
"""
Normal sympy str is very slow, this is a lot faster. The result are
somewhat worse, as it doesn't do as much simplification. So don't
use this for final codegen.
"""
if isinstance(expr, sympy.Symbol):
return expr.name
if isinstance(expr, sympy.Add):
return " + ".join(map(sympy_str, expr.args))
if isinstance(expr, sympy.Mul):
return " * ".join(map(sympy_str, expr.args))
from .ir import CleanDiv, FloorDiv, ModularIndexing
if isinstance(expr, (ModularIndexing, CleanDiv, FloorDiv)):
return f"{expr.func.__name__}({', '.join(map(sympy_str, expr.args))})"
return str(expr)
def sympy_symbol(name):
# This should never be used for creating shape/stride symbols, as those
# should all be allocated before Inductor.
assert name[0] != "s"
return sympy.Symbol(name, integer=True, positive=True)
def sympy_subs(expr: sympy.Expr, replacements: Dict[Any, Any]):
"""
xreplace is faster than subs, but is way more picky
"""
def promote_strings(key):
if isinstance(key, str):
return sympy_symbol(key)
return key
return expr.xreplace(
{promote_strings(k): promote_strings(v) for k, v in replacements.items()}
)
def free_symbol_startswith(index: sympy.Expr, prefix: str):
return any(v.name.startswith(prefix) for v in index.free_symbols)
def has_incompatible_cudagraph_ops(gm):
forbidden_list = {
"aten._fused_moving_avg_obs_fq_helper.default",
"aten._fused_moving_avg_obs_fq_helper_functional.default",
"fbgemm.dense_to_jagged.default",
"fbgemm.jagged_to_padded_dense.default",
}
for node in gm.graph.nodes:
if str(node.target) in forbidden_list:
return True
return False
instance_descriptor = collections.namedtuple(
"instance_descriptor", ["divisible_by_16", "equal_to_1"]
)
@contextlib.contextmanager
def fresh_inductor_cache(cache_entries=None):
"""
Contextmanager that provides a clean tmp cachedir for inductor.
Optionally, pass a dict as 'cache_entries' to get a list of filenames and sizes
generated with this cache instance.
"""
with tempfile.TemporaryDirectory() as inductor_cache_dir:
with mock.patch.dict(
os.environ, {"TORCHINDUCTOR_CACHE_DIR": inductor_cache_dir}
):
triton_cache_dir = os.path.join(inductor_cache_dir, "triton")
with mock.patch.dict(os.environ, {"TRITON_CACHE_DIR": triton_cache_dir}):
yield
if isinstance(cache_entries, dict):
assert len(cache_entries) == 0, "expected empty cache_entries dict"
if os.path.exists(triton_cache_dir):
files = os.listdir(triton_cache_dir)
cache_entries.update(
{
f: os.path.getsize(os.path.join(triton_cache_dir, f))
for f in files
if ".lock" not in f
}
)
def argsort(seq):
# preserve original order for equal strides
getter = seq.__getitem__
Loading ...