Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torch   python

Repository URL to install this package:

Version: 2.0.1+cpu 

/ ao / nn / intrinsic / modules / fused.py

import torch
from torch.nn import Conv1d, Conv2d, Conv3d, ReLU, Linear, BatchNorm1d, BatchNorm2d, BatchNorm3d
from torch.nn.utils.parametrize import type_before_parametrizations

__all__ = ['ConvReLU1d', 'ConvReLU2d', 'ConvReLU3d', 'LinearReLU', 'ConvBn1d', 'ConvBn2d',
           'ConvBnReLU1d', 'ConvBnReLU2d', 'ConvBn3d', 'ConvBnReLU3d', 'BNReLU2d', 'BNReLU3d',
           'LinearBn1d', 'LinearLeakyReLU', 'LinearTanh', 'ConvAdd2d', 'ConvAddReLU2d']

# Used for identifying intrinsic modules used in quantization
class _FusedModule(torch.nn.Sequential):
    pass

class ConvReLU1d(_FusedModule):
    r"""This is a sequential container which calls the Conv1d and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, relu):
        assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(relu) == ReLU, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(conv), type_before_parametrizations(relu))
        super().__init__(conv, relu)

class ConvReLU2d(_FusedModule):
    r"""This is a sequential container which calls the Conv2d and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, relu):
        assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(relu) == ReLU, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(conv), type_before_parametrizations(relu))
        super().__init__(conv, relu)

class ConvReLU3d(_FusedModule):
    r"""This is a sequential container which calls the Conv3d and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, relu):
        assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(relu) == ReLU, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(conv), type_before_parametrizations(relu))
        super().__init__(conv, relu)

class LinearReLU(_FusedModule):
    r"""This is a sequential container which calls the Linear and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, linear, relu):
        assert type_before_parametrizations(linear) == Linear and type_before_parametrizations(relu) == ReLU, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(linear), type_before_parametrizations(relu))
        super().__init__(linear, relu)

class ConvBn1d(_FusedModule):
    r"""This is a sequential container which calls the Conv 1d and Batch Norm 1d modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, bn):
        assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(bn) == BatchNorm1d, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(conv), type_before_parametrizations(bn))
        super().__init__(conv, bn)

class ConvBn2d(_FusedModule):
    r"""This is a sequential container which calls the Conv 2d and Batch Norm 2d modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, bn):
        assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(bn) == BatchNorm2d, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(conv), type_before_parametrizations(bn))
        super().__init__(conv, bn)

class ConvBnReLU1d(_FusedModule):
    r"""This is a sequential container which calls the Conv 1d, Batch Norm 1d, and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, bn, relu):
        assert type_before_parametrizations(conv) == Conv1d and type_before_parametrizations(bn) == BatchNorm1d and \
            type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \
            .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu))
        super().__init__(conv, bn, relu)

class ConvBnReLU2d(_FusedModule):
    r"""This is a sequential container which calls the Conv 2d, Batch Norm 2d, and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, bn, relu):
        assert type_before_parametrizations(conv) == Conv2d and type_before_parametrizations(bn) == BatchNorm2d and \
            type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \
            .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu))
        super().__init__(conv, bn, relu)

class ConvBn3d(_FusedModule):
    r"""This is a sequential container which calls the Conv 3d and Batch Norm 3d modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, bn):
        assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(bn) == BatchNorm3d, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(conv), type_before_parametrizations(bn))
        super().__init__(conv, bn)

class ConvBnReLU3d(_FusedModule):
    r"""This is a sequential container which calls the Conv 3d, Batch Norm 3d, and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, bn, relu):
        assert type_before_parametrizations(conv) == Conv3d and type_before_parametrizations(bn) == BatchNorm3d and \
            type_before_parametrizations(relu) == ReLU, 'Incorrect types for input modules{}{}{}' \
            .format(type_before_parametrizations(conv), type_before_parametrizations(bn), type_before_parametrizations(relu))
        super().__init__(conv, bn, relu)


class BNReLU2d(_FusedModule):
    r"""This is a sequential container which calls the BatchNorm 2d and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, batch_norm, relu):
        assert type_before_parametrizations(batch_norm) == BatchNorm2d and type_before_parametrizations(relu) == ReLU, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(batch_norm), type_before_parametrizations(relu))
        super().__init__(batch_norm, relu)

class BNReLU3d(_FusedModule):
    r"""This is a sequential container which calls the BatchNorm 3d and ReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, batch_norm, relu):
        assert type_before_parametrizations(batch_norm) == BatchNorm3d and type_before_parametrizations(relu) == ReLU, \
            'Incorrect types for input modules{}{}'.format(
                type_before_parametrizations(batch_norm), type_before_parametrizations(relu))
        super().__init__(batch_norm, relu)


class LinearBn1d(_FusedModule):
    r"""This is a sequential container which calls the Linear and BatchNorm1d modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, linear, bn):
        assert type_before_parametrizations(linear) == Linear and type_before_parametrizations(bn) == BatchNorm1d, \
            'Incorrect types for input modules{}{}'.format(type_before_parametrizations(linear), type_before_parametrizations(bn))
        super().__init__(linear, bn)

class LinearLeakyReLU(_FusedModule):
    r"""This is a sequential container which calls the Linear and LeakyReLU modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, linear, leaky_relu):
        assert type(linear) == Linear and type(leaky_relu) == torch.nn.LeakyReLU, \
            'Incorrect types for input modules{}{}'.format(
                type(linear), type(leaky_relu))
        super().__init__(linear, leaky_relu)

class LinearTanh(_FusedModule):
    r"""This is a sequential container which calls the Linear and Tanh modules.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, linear, tanh):
        assert type(linear) == Linear and type(tanh) == torch.nn.Tanh, \
            'Incorrect types for input modules{}{}'.format(
                type(linear), type(tanh))
        super().__init__(linear, tanh)

class ConvAdd2d(_FusedModule):
    r"""This is a sequential container which calls the Conv2d modules with extra Add.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, add):
        super().__init__(conv)
        self.add = add

    def forward(self, x1, x2):
        return self.add(self[0](x1), x2)

class ConvAddReLU2d(_FusedModule):
    r"""This is a sequential container which calls the Conv2d, add, Relu.
    During quantization this will be replaced with the corresponding fused module."""
    def __init__(self, conv, add, relu):
        super().__init__(conv)
        self.add = add
        self.relu = relu

    def forward(self, x1, x2):
        return self.relu(self.add(self[0](x1), x2))