Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torch   python

Repository URL to install this package:

Version: 2.0.1+cpu 

/ ao / nn / quantized / reference / modules / conv.py

import torch
import torch.nn as nn
import torch.nn.functional as F
from typing import Optional, Dict, Any, List
from torch.nn.common_types import _size_1_t
from .utils import ReferenceQuantizedModule

__all__ = ['Conv1d', 'Conv2d', 'Conv3d', 'ConvTranspose1d', 'ConvTranspose2d', 'ConvTranspose3d']

class _ConvNd(torch.nn.modules.conv._ConvNd, ReferenceQuantizedModule):
    """ A reference version of nn.quantized.Conv2d
        we will not pack the parameters in this module, since weight packing is an
        optimization for quantized backends supported in PyTorch (fbgemm/qnnpack),
        this is useful when user want to use this module in other backends like Glow.
    """
    __annotations__ = {"bias": Optional[torch.Tensor]}
    _IS_REFERENCE = True

    @staticmethod
    def from_float(cls, float_conv, weight_qparams):
        qref_conv = cls(
            float_conv.in_channels,
            float_conv.out_channels,
            float_conv.kernel_size,  # type: ignore[arg-type]
            float_conv.stride,  # type: ignore[arg-type]
            float_conv.padding,  # type: ignore[arg-type]
            float_conv.dilation,  # type: ignore[arg-type]
            float_conv.groups,
            float_conv.bias is not None,  # type: ignore[arg-type]
            float_conv.padding_mode,
            device=float_conv.weight.device,
            dtype=float_conv.weight.dtype,
            weight_qparams=weight_qparams)
        qref_conv.weight = torch.nn.Parameter(float_conv.weight.detach())
        if float_conv.bias is not None:
            qref_conv.bias = torch.nn.Parameter(float_conv.bias.detach())
        return qref_conv

class Conv1d(_ConvNd, nn.Conv1d):
    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 kernel_size: _size_1_t,
                 stride: _size_1_t = 1,
                 padding: _size_1_t = 0,
                 dilation: _size_1_t = 1,
                 groups: int = 1,
                 bias: bool = True,
                 padding_mode: str = "zeros",
                 device=None,
                 dtype=None,
                 weight_qparams: Optional[Dict[str, Any]] = None):
        nn.Conv1d.__init__(
            self, in_channels, out_channels, kernel_size, stride, padding, dilation,
            groups, bias, padding_mode, device, dtype)
        self._init_weight_qparams(weight_qparams, device)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        we have:
        w(float) -- quant - dequant \
        x(float) ------------- F.conv1d ---

        In the full model, we will see
        w(float) -- quant - *dequant \
        x -- quant --- *dequant --  *F.conv1d --- *quant - dequant
        and the backend should be able to fuse the ops with `*` into a quantized conv1d
        """
        weight_quant_dequant = self.get_weight()
        result = F.conv1d(
            x, weight_quant_dequant, self.bias, self.stride,
            self.padding, self.dilation, self.groups)
        return result

    def _get_name(self):
        return "QuantizedConv1d(Reference)"

    @classmethod
    def from_float(cls, float_conv, weight_qparams):
        return _ConvNd.from_float(cls, float_conv, weight_qparams)

class Conv2d(_ConvNd, nn.Conv2d):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True,
                 padding_mode='zeros',
                 device=None,
                 dtype=None,
                 weight_qparams: Optional[Dict[str, Any]] = None):
        nn.Conv2d.__init__(
            self, in_channels, out_channels, kernel_size, stride, padding, dilation,
            groups, bias, padding_mode, device, dtype)
        self._init_weight_qparams(weight_qparams, device)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        we have:
        w(float) -- quant - dequant \
        x(float) ------------- F.conv2d ---

        In the full model, we will see
        w(float) -- quant - *dequant \
        x -- quant --- *dequant --  *F.conv2d --- *quant - dequant
        and the backend should be able to fuse the ops with `*` into a quantized conv2d
        """
        weight_quant_dequant = self.get_weight()
        result = F.conv2d(
            x, weight_quant_dequant, self.bias, self.stride,
            self.padding, self.dilation, self.groups)
        return result

    def _get_name(self):
        return "QuantizedConv2d(Reference)"

    @classmethod
    def from_float(cls, float_conv, weight_qparams):
        return _ConvNd.from_float(cls, float_conv, weight_qparams)

class Conv3d(_ConvNd, nn.Conv3d):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, dilation=1, groups=1, bias=True,
                 padding_mode="zeros",
                 device=None,
                 dtype=None,
                 weight_qparams: Optional[Dict[str, Any]] = None):
        nn.Conv3d.__init__(
            self, in_channels, out_channels, kernel_size, stride, padding, dilation,
            groups, bias, padding_mode, device, dtype)
        self._init_weight_qparams(weight_qparams, device)

    def forward(self, x: torch.Tensor) -> torch.Tensor:
        """
        we have:
        w(float) -- quant - dequant \
        x(float) ------------- F.conv3d ---

        In the full model, we will see
        w(float) -- quant - *dequant \
        x -- quant --- *dequant --  *F.conv3d --- *quant - dequant
        and the backend should be able to fuse the ops with `*` into a quantized conv3d
        """
        weight_quant_dequant = self.get_weight()
        result = F.conv3d(
            x, weight_quant_dequant, self.bias, self.stride,
            self.padding, self.dilation, self.groups)
        return result

    def _get_name(self):
        return "QuantizedConv3d(Reference)"

    @classmethod
    def from_float(cls, float_conv, weight_qparams):
        return _ConvNd.from_float(cls, float_conv, weight_qparams)

class _ConvTransposeNd(_ConvNd, torch.nn.modules.conv._ConvTransposeNd):
    """ A reference version of nn.quantized.ConvTranspose2d
        we will not pack the parameters in this module, since weight packing is an
        optimization for quantized backends supported in PyTorch (fbgemm/qnnpack),
        this is useful when user want to use this module in other backends like Glow.
    """
    @staticmethod
    def from_float(cls, float_conv, weight_qparams):
        qref_conv = cls(
            float_conv.in_channels,
            float_conv.out_channels,
            float_conv.kernel_size,  # type: ignore[arg-type]
            float_conv.stride,  # type: ignore[arg-type]
            float_conv.padding,  # type: ignore[arg-type]
            float_conv.output_padding,  # type: ignore[arg-type]
            float_conv.groups,
            float_conv.bias is not None,  # type: ignore[arg-type]
            float_conv.dilation,  # type: ignore[arg-type]
            float_conv.padding_mode,
            device=float_conv.weight.device,
            dtype=float_conv.weight.dtype,
            weight_qparams=weight_qparams)
        qref_conv.weight = torch.nn.Parameter(float_conv.weight.detach())
        if float_conv.bias is not None:
            qref_conv.bias = torch.nn.Parameter(float_conv.bias.detach())
        return qref_conv


class ConvTranspose1d(_ConvTransposeNd, nn.ConvTranspose1d):
    def __init__(self,
                 in_channels: int,
                 out_channels: int,
                 kernel_size: _size_1_t,
                 stride: _size_1_t = 1,
                 padding: _size_1_t = 0,
                 output_padding: _size_1_t = 0,
                 groups: int = 1,
                 bias: bool = True,
                 dilation: _size_1_t = 1,
                 padding_mode: str = "zeros",
                 device=None,
                 dtype=None,
                 weight_qparams: Optional[Dict[str, Any]] = None):
        nn.ConvTranspose1d.__init__(
            self, in_channels, out_channels, kernel_size, stride, padding, output_padding,
            groups, bias, dilation, padding_mode, device, dtype)
        self._init_weight_qparams(weight_qparams, device)

    def forward(self, x: torch.Tensor, output_size: Optional[List[int]] = None) -> torch.Tensor:
        """
        we have:
        w(float) -- quant - dequant \
        x(float) ------------- F.convTranspose1d ---
        In the full model, we will see
        w(float) -- quant - *dequant \
        x -- quant --- *dequant --  *F.convTranspose1d --- *quant - dequant
        and the backend should be able to fuse the ops with `*` into a quantized conv1d
        """

        assert isinstance(self.padding, tuple)
        # One cannot replace List by Tuple or Sequence in "_output_padding" because
        # TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
        output_padding = self._output_padding(
            input, output_size, self.stride, self.padding, self.kernel_size, self.dilation)  # type: ignore[arg-type]

        weight_quant_dequant = self.get_weight()
        result = F.conv_transpose1d(
            x, weight_quant_dequant, self.bias, self.stride,
            self.padding, output_padding, self.groups, self.dilation)
        return result

    def _get_name(self):
        return "QuantizedConvTranspose1d(Reference)"

    @classmethod
    def from_float(cls, float_conv, weight_qparams):
        return _ConvTransposeNd.from_float(cls, float_conv, weight_qparams)

class ConvTranspose2d(_ConvTransposeNd, nn.ConvTranspose2d):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, output_padding=0,
                 groups=1, bias=True, dilation=1,
                 padding_mode='zeros',
                 device=None,
                 dtype=None,
                 weight_qparams: Optional[Dict[str, Any]] = None):

        nn.ConvTranspose2d.__init__(
            self, in_channels, out_channels, kernel_size, stride, padding, output_padding,
            groups, bias, dilation, padding_mode, device, dtype)
        self._init_weight_qparams(weight_qparams, device)

    def forward(self, x: torch.Tensor, output_size: Optional[List[int]] = None) -> torch.Tensor:
        """
        we have:
        w(float) -- quant - dequant \
        x(float) ------------- F.convTranspose2d ---
        In the full model, we will see
        w(float) -- quant - *dequant \
        x -- quant --- *dequant --  *F.convTranspose2d --- *quant - dequant
        and the backend should be able to fuse the ops with `*` into a quantized conv2d
        """
        assert isinstance(self.padding, tuple)
        # One cannot replace List by Tuple or Sequence in "_output_padding" because
        # TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.

        output_padding = self._output_padding(
            input, output_size, self.stride, self.padding, self.kernel_size, self.dilation)  # type: ignore[arg-type]

        weight_quant_dequant = self.get_weight()
        result = F.conv_transpose2d(
            x, weight_quant_dequant, self.bias, self.stride,
            self.padding, output_padding, self.groups, self.dilation)

        return result

    def _get_name(self):
        return "QuantizedConvTranspose2d(Reference)"

    @classmethod
    def from_float(cls, float_conv, weight_qparams):
        return _ConvTransposeNd.from_float(cls, float_conv, weight_qparams)

class ConvTranspose3d(_ConvTransposeNd, nn.ConvTranspose3d):
    def __init__(self, in_channels, out_channels, kernel_size, stride=1,
                 padding=0, output_padding=0,
                 groups=1, bias=True, dilation=1,
                 padding_mode="zeros",
                 device=None,
                 dtype=None,
                 weight_qparams: Optional[Dict[str, Any]] = None):
        nn.ConvTranspose3d.__init__(
            self, in_channels, out_channels, kernel_size, stride, padding, output_padding,
            groups, bias, dilation, padding_mode, device, dtype)
        self._init_weight_qparams(weight_qparams, device)

    def forward(self, x: torch.Tensor, output_size: Optional[List[int]] = None) -> torch.Tensor:
        """
        we have:
        w(float) -- quant - dequant \
        x(float) ------------- F.convTranspose3d ---
        In the full model, we will see
        w(float) -- quant - *dequant \
        x -- quant --- *dequant --  *F.convTranspose3d --- *quant - dequant
        and the backend should be able to fuse the ops with `*` into a quantized conv3d
        """

        assert isinstance(self.padding, tuple)
        # One cannot replace List by Tuple or Sequence in "_output_padding" because
        # TorchScript does not support `Sequence[T]` or `Tuple[T, ...]`.
        output_padding = self._output_padding(
            input, output_size, self.stride, self.padding, self.kernel_size, self.dilation)  # type: ignore[arg-type]

        weight_quant_dequant = self.get_weight()
        result = F.conv_transpose3d(
            x, weight_quant_dequant, self.bias, self.stride,
            self.padding, output_padding, self.groups, self.dilation)
        return result

    def _get_name(self):
        return "QuantizedConvTranspose3d(Reference)"

    @classmethod
    def from_float(cls, float_conv, weight_qparams):
        return _ConvTransposeNd.from_float(cls, float_conv, weight_qparams)