Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torch   python

Repository URL to install this package:

/ ao / ns / _numeric_suite.py

import torch
import torch.nn as nn
import torch.ao.nn.quantized as nnq
import torch.ao.nn.quantized.dynamic as nnqd
from torch.ao.quantization import prepare
from typing import Dict, List, Optional, Any, Union, Callable, Set

from torch.ao.quantization.quantization_mappings import (
    get_default_compare_output_module_list,
)

NON_LEAF_MODULE_TO_ADD_OBSERVER_ALLOW_LIST = {
    nnqd.Linear,
    nnq.Linear,
    nnqd.LSTM,
    nn.LSTM,
}


def _find_match(
    str_list: Union[Dict[str, Any], List[str]], key_str: str,
    postfix: str,
) -> Optional[str]:
    split_str = key_str.split(".")
    if split_str[-1] == postfix:
        match_string = "".join(key_str.split(".")[0:-1])
        for s2 in str_list:
            pattern1 = "".join(s2.split(".")[0:-1])
            pattern2 = "".join(s2.split(".")[0:-2])
            if match_string == pattern1:
                return s2
            if match_string == pattern2:
                return s2

        # For matching "fc.weight" and "fc._packed_params._packed_params"
        if postfix == "_packed_params":
            match_string = "".join(key_str.split(".")[0:-2])
            if len(match_string) == 0:
                return None
            for s2 in str_list:
                pattern1 = "".join(s2.split(".")[0:-1])
                pattern2 = "".join(s2.split(".")[0:-2])
                if match_string == pattern1:
                    return s2
                if match_string == pattern2:
                    return s2
        return None
    else:
        return None


def compare_weights(
    float_dict: Dict[str, Any], quantized_dict: Dict[str, Any]
) -> Dict[str, Dict[str, torch.Tensor]]:
    r"""Compare the weights of the float module with its corresponding quantized
    module. Return a dict with key corresponding to module names and each entry being
    a dictionary with two keys 'float' and 'quantized', containing the float and
    quantized weights. This dict can be used to compare and compute the quantization
    error of the weights of float and quantized models.

    Example usage::

        wt_compare_dict = compare_weights(
            float_model.state_dict(), qmodel.state_dict())
        for key in wt_compare_dict:
            print(
                key,
                compute_error(
                    wt_compare_dict[key]['float'],
                    wt_compare_dict[key]['quantized'].dequantize()
                )
            )

    Args:
        float_dict: state dict of the float model
        quantized_dict: state dict of the quantized model

    Return:
        weight_dict: dict with key corresponding to module names and each entry being
        a dictionary with two keys 'float' and 'quantized', containing the float and
        quantized weights
    """
    torch._C._log_api_usage_once("quantization_api._numeric_suite.compare_weights")
    weight_dict: Dict[str, Dict] = {}
    for key in quantized_dict:
        match_key = _find_match(float_dict, key, "weight")
        if match_key is not None:
            weight_dict[key] = {}
            weight_dict[key]["float"] = float_dict[match_key]
            weight_dict[key]["quantized"] = quantized_dict[key]
            continue

        # For matching "fc.weight" and "fc._packed_params._packed_params"
        match_key = _find_match(float_dict, key, "_packed_params")
        if match_key is not None:
            weight_dict[key] = {}
            weight_dict[key]["float"] = float_dict[match_key]
            weight_dict[key]["quantized"] = quantized_dict[key][0]

        # For LSTM
        split_str = key.split(".")
        if split_str[-1] == "param" and split_str[-3] == "_all_weight_values":
            layer = split_str[-2]
            module_name = ".".join(split_str[:-3])
            float_weight_ih_key = module_name + ".weight_ih_l" + layer
            float_weight_hh_key = module_name + ".weight_hh_l" + layer
            if float_weight_ih_key in float_dict and float_weight_hh_key in float_dict:
                weight_dict[key] = {}
                weight_dict[key]["float"] = float_dict[float_weight_ih_key]
                weight_dict[key]["quantized"] = (
                    quantized_dict[key].__getstate__()[0][4][0].__getstate__()[0][0]
                )
                weight_dict[key]["float"] = float_dict[float_weight_hh_key]
                weight_dict[key]["quantized"] = (
                    quantized_dict[key].__getstate__()[0][4][1].__getstate__()[0][0]
                )

    return weight_dict


def _get_logger_dict_helper(
    mod: nn.Module, target_dict: Dict[str, Any],
    prefix: str = "",
) -> None:
    r"""This is the helper function for get_logger_dict

    Args:
        mod: module we want to save all logger stats
        prefix: prefix for the current module
        target_dict: the dictionary used to save all logger stats
    """

    def get_prefix(prefix):
        return prefix if prefix == "" else prefix + "."

    for name, child in mod.named_children():
        if isinstance(child, Logger):
            target_dict[get_prefix(prefix) + "stats"] = child.stats
            break

    for name, child in mod.named_children():
        module_prefix = get_prefix(prefix) + name if prefix else name
        _get_logger_dict_helper(child, target_dict, module_prefix)


def get_logger_dict(mod: nn.Module, prefix: str = "") -> Dict[str, Dict]:
    r"""Traverse the modules and save all logger stats into target dict.
    This is mainly used for quantization accuracy debug.

    Type of loggers supported:
        ShadowLogger: used to log the outputs of the quantized module and its matching float shadow module,
        OutputLogger: used to log the outputs of the modules

    Args:
        mod: module we want to save all logger stats
        prefix: prefix for the current module

    Return:
        target_dict: the dictionary used to save all logger stats

    """
    torch._C._log_api_usage_once("quantization_api._numeric_suite.get_logger_dict")

    target_dict: Dict[str, Dict] = {}
    _get_logger_dict_helper(mod, target_dict, prefix)
    return target_dict


class Logger(nn.Module):
    r"""Base class for stats logging
    """

    def __init__(self):
        super().__init__()
        self.stats = {}
        # We only insert observer if the op is quantized with static quantization,
        # which is identified by activation_observer.dtype == quint8.  This is needed
        # when attaching Logger as observer for FX mode
        self.dtype = torch.quint8

    def forward(self, x):
        """
        """  # blank docblock to make autodoc happy
        pass


class ShadowLogger(Logger):
    r"""Class used in Shadow module to record the outputs of the original and
    shadow modules.
    """

    def __init__(self):
        super().__init__()
        self.stats["float"] = []
        self.stats["quantized"] = []

    def forward(self, x, y):
        """
        """  # blank docblock to make autodoc happy
        if len(x) > 1:
            x = x[0]
        if len(y) > 1:
            y = y[0]
        self.stats["quantized"].append(x.detach())
        self.stats["float"].append(y.detach())


class OutputLogger(Logger):
    r"""Class used to log the outputs of the module
    """

    def __init__(self):
        super().__init__()
        self.stats["tensor_val"] = []


    def forward(self, x):
        """
        """  # blank docblock to make autodoc happy
        self.stats["tensor_val"].append(x)
        return x


def _convert_tuple_to_list(t: Any) -> Any:
    return [_convert_tuple_to_list(x) for x in t] if type(t) is tuple else t


def _dequantize_tensor_list(t: Any) -> Any:
    return (
        [_dequantize_tensor_list(x) for x in t]
        if type(t) is list
        else t.dequantize()
        if t.is_quantized
        else t
    )


class Shadow(nn.Module):
    r"""Shadow module attaches the float module to its matching quantized module
    as the shadow. Then it uses Logger module to process the outputs of both
    modules.

    Args:
        q_module: module quantized from float_module that we want to shadow
        float_module: float module used to shadow q_module
        logger_cls: type of logger used to process the outputs of q_module and
            float_module. ShadowLogger or custom loggers can be used.
    """

    def __init__(self, q_module, float_module, logger_cls):
        super().__init__()
        self.orig_module = q_module
        self.shadow_module = float_module
        self.dequant = nnq.DeQuantize()
        self.logger = logger_cls()

    def forward(self, *x) -> torch.Tensor:
        """
        """  # blank docblock to make autodoc happy
        xl = _convert_tuple_to_list(x)
        output = self.orig_module(*xl)
        xl_float = _dequantize_tensor_list(xl)
        shadow_output = self.shadow_module(*xl_float)
        self.logger(output, shadow_output)
        return output

    def add(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
        """
        """  # blank docblock to make autodoc happy
        output = self.orig_module.add(x, y)
        x = x.dequantize()
        y = y.dequantize()
        shadow_output = self.shadow_module.add(x, y)
        self.logger(output, shadow_output)
        return output

    def add_scalar(self, x: torch.Tensor, y: float) -> torch.Tensor:
        """
        """  # blank docblock to make autodoc happy
        output = self.orig_module.add_scalar(x, y)
        x = x.dequantize()
        shadow_output = self.shadow_module.add_scalar(x, y)
        self.logger(output, shadow_output)
        return output

    def mul(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
        """
        """  # blank docblock to make autodoc happy
        output = self.orig_module.mul(x, y)
        x = x.dequantize()
        y = y.dequantize()
        shadow_output = self.shadow_module.mul(x, y)
        self.logger(output, shadow_output)
        return output

    def mul_scalar(self, x: torch.Tensor, y: float) -> torch.Tensor:
        """
        """  # blank docblock to make autodoc happy
        output = self.orig_module.mul_scalar(x, y)
        x = x.dequantize()
        shadow_output = self.shadow_module.mul_scalar(x, y)
        self.logger(output, shadow_output)
        return output

    def cat(self, x: List[torch.Tensor], dim: int = 0) -> torch.Tensor:
        """
        """  # blank docblock to make autodoc happy
        output = self.orig_module.cat(x, dim)
        x = [y.dequantize() for y in x]
        shadow_output = self.shadow_module.cat(x, dim)
        self.logger(output, shadow_output)
        return output

    def add_relu(self, x: torch.Tensor, y: torch.Tensor) -> torch.Tensor:
        """
        """  # blank docblock to make autodoc happy
        output = self.orig_module.add_relu(x, y)
        x = x.dequantize()
        y = y.dequantize()
        shadow_output = self.shadow_module.add_relu(x, y)
        self.logger(output, shadow_output)
        return output


def prepare_model_with_stubs(
    float_module: nn.Module, q_module: nn.Module,
    module_swap_list: Set[type], logger_cls: Callable,
) -> None:
    r"""Prepare the model by attaching the float module to its matching quantized
    module as the shadow if the float module type is in module_swap_list.

    Example usage::

        prepare_model_with_stubs(float_model, q_model, module_swap_list, Logger)
        q_model(data)
        ob_dict = get_logger_dict(q_model)

    Args:
        float_module: float module used to generate the q_module
        q_module: module quantized from float_module
        module_swap_list: list of float module types to attach the shadow
        logger_cls: type of logger to be used in shadow module to process the outputs of
            quantized module and its float shadow module
    """
    torch._C._log_api_usage_once("quantization_api._numeric_suite.prepare_model_with_stubs")
Loading ...