from typing import Dict, Any, List
import torch
from collections import defaultdict
from torch import nn
import copy
from ...sparsifier.utils import fqn_to_module, module_to_fqn
import warnings
__all__ = ['ActivationSparsifier']
class ActivationSparsifier:
r"""
The Activation sparsifier class aims to sparsify/prune activations in a neural
network. The idea is to attach the sparsifier to a layer (or layers) and it
zeroes out the activations based on the mask_fn (or sparsification function)
input by the user.
The mask_fn is applied once all the inputs are aggregated and reduced i.e.
mask = mask_fn(reduce_fn(aggregate_fn(activations)))
Note::
The sparsification mask is computed on the input **before it goes through the attached layer**.
Args:
model (nn.Module):
The model whose layers will be sparsified. The layers that needs to be
sparsified should be added separately using the register_layer() function
aggregate_fn (Optional, Callable):
default aggregate_fn that is used if not specified while registering the layer.
specifies how inputs should be aggregated over time.
The aggregate_fn should usually take 2 torch tensors and return the aggregated tensor.
Example
def add_agg_fn(tensor1, tensor2): return tensor1 + tensor2
reduce_fn (Optional, Callable):
default reduce_fn that is used if not specified while registering the layer.
reduce_fn will be called on the aggregated tensor i.e. the tensor obtained after
calling agg_fn() on all inputs.
Example
def mean_reduce_fn(agg_tensor): return agg_tensor.mean(dim=0)
mask_fn (Optional, Callable):
default mask_fn that is used to create the sparsification mask using the tensor obtained after
calling the reduce_fn(). This is used by default if a custom one is passed in the
register_layer().
Note that the mask_fn() definition should contain the sparse arguments that is passed in sparse_config
arguments.
features (Optional, list):
default selected features to sparsify.
If this is non-empty, then the mask_fn will be applied for each feature of the input.
For example,
mask = [mask_fn(reduce_fn(aggregated_fn(input[feature])) for feature in features]
feature_dim (Optional, int):
default dimension of input features. Again, features along this dim will be chosen
for sparsification.
sparse_config (Dict):
Default configuration for the mask_fn. This config will be passed
with the mask_fn()
Example:
>>> # xdoctest: +SKIP
>>> model = SomeModel()
>>> act_sparsifier = ActivationSparsifier(...) # init activation sparsifier
>>> # Initialize aggregate_fn
>>> def agg_fn(x, y):
>>> return x + y
>>>
>>> # Initialize reduce_fn
>>> def reduce_fn(x):
>>> return torch.mean(x, dim=0)
>>>
>>> # Initialize mask_fn
>>> def mask_fn(data):
>>> return torch.eye(data.shape).to(data.device)
>>>
>>>
>>> act_sparsifier.register_layer(model.some_layer, aggregate_fn=agg_fn, reduce_fn=reduce_fn, mask_fn=mask_fn)
>>>
>>> # start training process
>>> for _ in [...]:
>>> # epoch starts
>>> # model.forward(), compute_loss() and model.backwards()
>>> # epoch ends
>>> act_sparsifier.step()
>>> # end training process
>>> sparsifier.squash_mask()
"""
def __init__(self, model: nn.Module, aggregate_fn=None, reduce_fn=None, mask_fn=None,
features=None, feature_dim=None, **sparse_config):
self.model = model
self.defaults: Dict[str, Any] = defaultdict()
self.defaults['sparse_config'] = sparse_config
# functions
self.defaults['aggregate_fn'] = aggregate_fn
self.defaults['reduce_fn'] = reduce_fn
self.defaults['mask_fn'] = mask_fn
# default feature and feature_dim
self.defaults['features'] = features
self.defaults['feature_dim'] = feature_dim
self.data_groups: Dict[str, Dict] = defaultdict(dict) # contains all relevant info w.r.t each registered layer
self.state: Dict[str, Any] = defaultdict(dict) # layer name -> mask
@staticmethod
def _safe_rail_checks(args):
"""Makes sure that some of the functions and attributes are not passed incorrectly
"""
# if features are not None, then feature_dim must not be None
features, feature_dim = args['features'], args['feature_dim']
if features is not None:
assert feature_dim is not None, "need feature dim to select features"
# all the *_fns should be callable
fn_keys = ['aggregate_fn', 'reduce_fn', 'mask_fn']
for key in fn_keys:
fn = args[key]
assert callable(fn), 'function should be callable'
def _aggregate_hook(self, name):
"""Returns hook that computes aggregate of activations passing through.
"""
# gather some data
feature_dim = self.data_groups[name]['feature_dim']
features = self.data_groups[name]['features']
agg_fn = self.data_groups[name]['aggregate_fn']
def hook(module, input) -> None:
input_data = input[0]
data = self.data_groups[name].get('data') # aggregated data
if features is None:
# no features associated, data should not be a list
if data is None:
data = torch.zeros_like(input_data)
self.state[name]['mask'] = torch.ones_like(input_data)
out_data = agg_fn(data, input_data)
else:
# data should be a list [aggregated over each feature only]
if data is None:
out_data = [0 for _ in range(0, len(features))] # create one incase of 1st forward
self.state[name]['mask'] = [0 for _ in range(0, len(features))]
else:
out_data = data # a list
# compute aggregate over each feature
for feature_idx in range(len(features)):
# each feature is either a list or scalar, convert it to torch tensor
feature_tensor = torch.Tensor([features[feature_idx]]).long().to(input_data.device)
data_feature = torch.index_select(input_data, feature_dim, feature_tensor)
if data is None:
curr_data = torch.zeros_like(data_feature)
self.state[name]['mask'][feature_idx] = torch.ones_like(data_feature)
else:
curr_data = data[feature_idx]
out_data[feature_idx] = agg_fn(curr_data, data_feature)
self.data_groups[name]['data'] = out_data
return hook
def register_layer(self, layer: nn.Module, aggregate_fn=None, reduce_fn=None,
mask_fn=None, features=None, feature_dim=None, **sparse_config):
r"""
Registers a layer for sparsification. The layer should be part of self.model.
Specifically, registers a pre-forward hook to the layer. The hook will apply the aggregate_fn
and store the aggregated activations that is input over each step.
Note::
- There is no need to pass in the name of the layer as it is automatically computed as per
the fqn convention.
- All the functions (fn) passed as argument will be called at a dim, feature level.
"""
name = module_to_fqn(self.model, layer)
assert name is not None, "layer not found in the model" # satisfy mypy
if name in self.data_groups: # unregister layer if already present
warnings.warn("layer already attached to the sparsifier, deregistering the layer and registering with new config")
self.unregister_layer(name=name)
local_args = copy.deepcopy(self.defaults)
update_dict = {
'aggregate_fn': aggregate_fn,
'reduce_fn': reduce_fn,
'mask_fn': mask_fn,
'features': features,
'feature_dim': feature_dim,
'layer': layer
}
local_args.update((arg, val) for arg, val in update_dict.items() if val is not None)
local_args['sparse_config'].update(sparse_config)
self._safe_rail_checks(local_args)
self.data_groups[name] = local_args
agg_hook = layer.register_forward_pre_hook(self._aggregate_hook(name=name))
self.state[name]['mask'] = None # mask will be created when model forward is called.
# attach agg hook
self.data_groups[name]['hook'] = agg_hook
# for serialization purposes, we know whether aggregate_hook is attached
# or sparsify_hook()
self.data_groups[name]['hook_state'] = "aggregate" # aggregate hook is attached
def get_mask(self, name: str = None, layer: nn.Module = None):
"""
Returns mask associated to the layer.
The mask is
- a torch tensor is features for that layer is None.
- a list of torch tensors for each feature, otherwise
Note::
The shape of the mask is unknown until model.forward() is applied.
Hence, if get_mask() is called before model.forward(), an
error will be raised.
"""
assert name is not None or layer is not None, "Need at least name or layer obj to retrieve mask"
if name is None:
assert layer is not None
name = module_to_fqn(self.model, layer)
assert name is not None, "layer not found in the specified model"
if name not in self.state:
raise ValueError("Error: layer with the given name not found")
mask = self.state[name].get('mask', None)
if mask is None:
raise ValueError("Error: shape unknown, call layer() routine at least once to infer mask")
return mask
def unregister_layer(self, name):
"""Detaches the sparsifier from the layer
"""
# detach any hooks attached
self.data_groups[name]['hook'].remove()
# pop from the state dict
self.state.pop(name)
# pop from the data groups
self.data_groups.pop(name)
def step(self):
"""Internally calls the update_mask() function for each layer
"""
with torch.no_grad():
for name, configs in self.data_groups.items():
data = configs['data']
self.update_mask(name, data, configs)
self.data_groups[name].pop('data') # reset the accumulated data
def update_mask(self, name, data, configs):
"""
Called for each registered layer and does the following-
1. apply reduce_fn on the aggregated activations
2. use mask_fn to compute the sparsification mask
Note:
the reduce_fn and mask_fn is called for each feature, dim over the data
"""
mask = self.get_mask(name)
sparse_config = configs['sparse_config']
features = configs['features']
reduce_fn = configs['reduce_fn']
mask_fn = configs['mask_fn']
if features is None:
data = reduce_fn(data)
mask.data = mask_fn(data, **sparse_config)
else:
for feature_idx in range(len(features)):
data_feature = reduce_fn(data[feature_idx])
mask[feature_idx].data = mask_fn(data_feature, **sparse_config)
def _sparsify_hook(self, name):
"""Returns hook that applies sparsification mask to input entering the attached layer
"""
mask = self.get_mask(name)
features = self.data_groups[name]['features']
feature_dim = self.data_groups[name]['feature_dim']
def hook(module, input):
input_data = input[0]
if features is None:
# apply to all the features
return input_data * mask
else:
# apply per feature, feature_dim
for feature_idx in range(0, len(features)):
feature = torch.Tensor([features[feature_idx]]).long().to(input_data.device)
sparsified = torch.index_select(input_data, feature_dim, feature) * mask[feature_idx]
input_data.index_copy_(feature_dim, feature, sparsified)
return input_data
return hook
def squash_mask(self, attach_sparsify_hook=True, **kwargs):
"""
Unregisters aggreagate hook that was applied earlier and registers sparsification hooks if
attach_sparsify_hook = True.
"""
for name, configs in self.data_groups.items():
# unhook agg hook
configs['hook'].remove()
configs.pop('hook')
self.data_groups[name]['hook_state'] = "None"
if attach_sparsify_hook:
configs['hook'] = configs['layer'].register_forward_pre_hook(self._sparsify_hook(name))
configs['hook_state'] = "sparsify" # signals that sparsify hook is now attached
def _get_serializable_data_groups(self):
"""Exclude hook and layer from the config keys before serializing
TODO: Might have to treat functions (reduce_fn, mask_fn etc) in a different manner while serializing.
For time-being, functions are treated the same way as other attributes
"""
data_groups: Dict[str, Any] = defaultdict()
for name, config in self.data_groups.items():
new_config = {key: value for key, value in config.items() if key not in ['hook', 'layer']}
data_groups[name] = new_config
return data_groups
def _convert_mask(self, states_dict, sparse_coo=True):
r"""Converts the mask to sparse coo or dense depending on the `sparse_coo` argument.
If `sparse_coo=True`, then the mask is stored as sparse coo else dense tensor
"""
states = copy.deepcopy(states_dict)
for _, state in states.items():
if state['mask'] is not None:
if isinstance(state['mask'], List):
for idx in range(len(state['mask'])):
if sparse_coo:
state['mask'][idx] = state['mask'][idx].to_sparse_coo()
else:
state['mask'][idx] = state['mask'][idx].to_dense()
else:
if sparse_coo:
state['mask'] = state['mask'].to_sparse_coo()
else:
state['mask'] = state['mask'].to_dense()
return states
def state_dict(self) -> Dict[str, Any]:
r"""Returns the state of the sparsifier as a :class:`dict`.
It contains:
* state - contains name -> mask mapping.
* data_groups - a dictionary containing all config information for each
layer
* defaults - the default config while creating the constructor
"""
data_groups = self._get_serializable_data_groups()
state = self._convert_mask(self.state)
return {
'state': state,
'data_groups': data_groups,
'defaults': self.defaults
}
def load_state_dict(self, state_dict: Dict[str, Any]) -> None:
r"""The load_state_dict() restores the state of the sparsifier based on the state_dict
Args:
* state_dict - the dictionary that to which the current sparsifier needs to be restored to
"""
state = state_dict['state']
data_groups, defaults = state_dict['data_groups'], state_dict['defaults']
self.__set_state__({'state': state, 'data_groups': data_groups, 'defaults': defaults})
def __get_state__(self) -> Dict[str, Any]:
data_groups = self._get_serializable_data_groups()
state = self._convert_mask(self.state)
return {
'defaults': self.defaults,
'state': state,
'data_groups': data_groups,
}
def __set_state__(self, state: Dict[str, Any]) -> None:
state['state'] = self._convert_mask(state['state'], sparse_coo=False) # convert mask to dense tensor
self.__dict__.update(state)
# need to attach layer and hook info into the data_groups
for name, config in self.data_groups.items():
# fetch layer
layer = fqn_to_module(self.model, name)
assert layer is not None # satisfy mypy
# if agg_mode is True, then layer in aggregate mode
if "hook_state" in config and config['hook_state'] == "aggregate":
hook = layer.register_forward_pre_hook(self._aggregate_hook(name))
elif "hook_state" in config and config["hook_state"] == "sparsify":
hook = layer.register_forward_pre_hook(self._sparsify_hook(name))
config['layer'] = layer
config['hook'] = hook
def __repr__(self):
format_string = self.__class__.__name__ + ' ('
for name, config in self.data_groups.items():
format_string += '\n'
format_string += '\tData Group\n'
format_string += f'\t name: {name}\n'
for key in sorted(config.keys()):
if key in ['data', 'hook', 'reduce_fn', 'mask_fn', 'aggregate_fn']:
continue
format_string += f'\t {key}: {config[key]}\n'
format_string += ')'
return format_string