import torch.nn as nn
import torch.ao.nn.intrinsic as nni
from typing import Union, Callable, Tuple, Dict, Optional, Type
from torch.ao.quantization.utils import Pattern, get_combined_dict, MatchAllNode
import itertools
__all__ = [
"fuse_conv_bn",
"fuse_conv_bn_relu",
"fuse_linear_bn",
"fuse_convtranspose_bn",
"get_fuser_method",
"get_fuser_method_new",
]
def fuse_conv_bn(is_qat, conv, bn):
r"""Given the conv and bn modules, fuses them and returns the fused module
Args:
is_qat: a flag for whether we are using quantization aware training fusion
or post training quantization fusion
conv: Module instance of type conv2d/conv3d
bn: Spatial BN instance that needs to be fused with the conv
Examples::
>>> m1 = nn.Conv2d(10, 20, 3)
>>> b1 = nn.BatchNorm2d(20)
>>> # xdoctest: +SKIP
>>> m2 = fuse_conv_bn(m1, b1)
"""
assert(conv.training == bn.training),\
"Conv and BN both must be in the same mode (train or eval)."
fused_module_class_map = {
nn.Conv1d: nni.ConvBn1d,
nn.Conv2d: nni.ConvBn2d,
nn.Conv3d: nni.ConvBn3d,
}
if is_qat:
assert bn.num_features == conv.out_channels, 'Output channel of Conv2d must match num_features of BatchNorm2d'
assert bn.affine, 'Only support fusing BatchNorm2d with affine set to True'
assert bn.track_running_stats, 'Only support fusing BatchNorm2d with tracking_running_stats set to True'
fused_module_class = fused_module_class_map.get((type(conv)), None)
if fused_module_class is not None:
return fused_module_class(conv, bn)
else:
raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn)))
else:
return nn.utils.fuse_conv_bn_eval(conv, bn)
def fuse_conv_bn_relu(is_qat, conv, bn, relu):
r"""Given the conv and bn modules, fuses them and returns the fused module
Args:
is_qat: a flag for whether we are using quantization aware training fusion
or post training quantization fusion
conv: Module instance of type conv2d/conv3d
bn: Spatial BN instance that needs to be fused with the conv
Examples::
>>> m1 = nn.Conv2d(10, 20, 3)
>>> b1 = nn.BatchNorm2d(20)
>>> r1 = nn.ReLU(inplace=False)
>>> # xdoctest: +SKIP
>>> m2 = fuse_conv_bn_relu(m1, b1, r1)
"""
assert(conv.training == bn.training == relu.training),\
"Conv and BN both must be in the same mode (train or eval)."
fused_module : Optional[Type[nn.Sequential]] = None
if is_qat:
map_to_fused_module_train = {
nn.Conv1d: nni.ConvBnReLU1d,
nn.Conv2d: nni.ConvBnReLU2d,
nn.Conv3d: nni.ConvBnReLU3d,
}
assert bn.num_features == conv.out_channels, 'Output channel of Conv must match num_features of BatchNorm'
assert bn.affine, 'Only support fusing BatchNorm with affine set to True'
assert bn.track_running_stats, 'Only support fusing BatchNorm with tracking_running_stats set to True'
fused_module = map_to_fused_module_train.get(type(conv), None)
if fused_module is not None:
return fused_module(conv, bn, relu)
else:
raise NotImplementedError("Cannot fuse train modules: {}".format((conv, bn, relu)))
else:
map_to_fused_module_eval = {
nn.Conv1d: nni.ConvReLU1d,
nn.Conv2d: nni.ConvReLU2d,
nn.Conv3d: nni.ConvReLU3d,
}
fused_module = map_to_fused_module_eval.get(type(conv), None)
if fused_module is not None:
fused_conv = nn.utils.fusion.fuse_conv_bn_eval(conv, bn)
return fused_module(fused_conv, relu)
else:
raise NotImplementedError("Cannot fuse eval modules: {}".format((conv, bn, relu)))
def fuse_linear_bn(is_qat, linear, bn):
r"""Given the linear and bn modules, fuses them and returns the fused module
Args:
is_qat: a flag for whether we are using quantization aware training fusion
or post training quantization fusion
linear: Module instance of type Linear
bn: BatchNorm1d instance that needs to be fused with the linear layer
Examples::
>>> m1 = nn.Linear(20, 10)
>>> b1 = nn.BatchNorm1d(10)
>>> # xdoctest: +SKIP
>>> m2 = fuse_linear_bn(m1, b1)
"""
assert(linear.training == bn.training),\
"Linear and BN both must be in the same mode (train or eval)."
if is_qat:
assert bn.num_features == linear.out_features,\
"Output features of Linear must match num_features of BatchNorm1d"
assert bn.affine, "Only support fusing BatchNorm1d with affine set to True"
assert bn.track_running_stats,\
"Only support fusing BatchNorm1d with tracking_running_stats set to True"
return nni.LinearBn1d(linear, bn)
else:
return nn.utils.fusion.fuse_linear_bn_eval(linear, bn)
def fuse_convtranspose_bn(is_qat, convt, bn):
r"""Given ConvTranspose and bn modules, fuses them and returns the fused module
Args:
convt: Module instance of type ConvTransposeNd
bn: BatchNormNd instance that needs to be fused with the linear layer.
batch norm N should match the ConvTranspose N
Examples::
>>> m1 = nn.ConvTranspose2d(10, 20, 3)
>>> b1 = nn.BatchNorm2d(20)
>>> # xdoctest: +SKIP
>>> m2 = fuse_convtranspose_bn(m1, b1)
"""
assert(convt.training == bn.training),\
"ConvTranspose and BN both must be in the same mode (train or eval)."
if is_qat:
raise Exception("Fusing ConvTranspose+BatchNorm not yet supported in QAT.")
else:
return nn.utils.fusion.fuse_conv_bn_eval(convt, bn, transpose=True)
def _sequential_wrapper2(sequential):
""" Given a sequential class for two modules, return a function that takes
is_qat, and then two modules as argument, that ignores the is_qat flag
and always returns the sequential that combines the two input modules
"""
def fuser_method(is_qat, m1, m2):
return sequential(m1, m2)
return fuser_method
_DEFAULT_OP_LIST_TO_FUSER_METHOD: Dict[Tuple, Union[nn.Sequential, Callable]] = {
(nn.Conv1d, nn.BatchNorm1d): fuse_conv_bn,
(nn.Conv1d, nn.BatchNorm1d, nn.ReLU): fuse_conv_bn_relu,
(nn.Conv2d, nn.BatchNorm2d): fuse_conv_bn,
(nn.Conv2d, nn.BatchNorm2d, nn.ReLU): fuse_conv_bn_relu,
(nn.Conv3d, nn.BatchNorm3d): fuse_conv_bn,
(nn.Conv3d, nn.BatchNorm3d, nn.ReLU): fuse_conv_bn_relu,
(nn.Conv1d, nn.ReLU): _sequential_wrapper2(nni.ConvReLU1d),
(nn.Conv2d, nn.ReLU): _sequential_wrapper2(nni.ConvReLU2d),
(nn.Conv3d, nn.ReLU): _sequential_wrapper2(nni.ConvReLU3d),
(nn.Linear, nn.BatchNorm1d): fuse_linear_bn,
(nn.Linear, nn.ReLU): _sequential_wrapper2(nni.LinearReLU),
(nn.BatchNorm2d, nn.ReLU): _sequential_wrapper2(nni.BNReLU2d),
(nn.BatchNorm3d, nn.ReLU): _sequential_wrapper2(nni.BNReLU3d),
(nn.ConvTranspose1d, nn.BatchNorm1d): fuse_convtranspose_bn,
(nn.ConvTranspose2d, nn.BatchNorm2d): fuse_convtranspose_bn,
(nn.ConvTranspose3d, nn.BatchNorm3d): fuse_convtranspose_bn,
}
def get_fuser_method(op_list, additional_fuser_method_mapping=None):
''' Get fuser method for the given list of module types,
return None if fuser method does not exist
'''
if additional_fuser_method_mapping is None:
additional_fuser_method_mapping = {}
all_mappings = get_combined_dict(_DEFAULT_OP_LIST_TO_FUSER_METHOD,
additional_fuser_method_mapping)
fuser_method = all_mappings.get(op_list, None)
assert fuser_method is not None, "did not find fuser method for: {} ".format(op_list)
return fuser_method
def _reverse2(f):
def reversed(is_qat, x, y):
return f(is_qat, y, x)
return reversed
def _reverse3(f):
def reversed(is_qat, x, w):
y, z = w
return f(is_qat, z, y, x)
return reversed
def _get_valid_patterns(op_pattern):
"""
Returns a list of valid patterns generated from the op_pattern,
since MatchAllNode can match all types of nodes,
e.g. pattern (torch.nn.Conv2d, torch.add) should also be able to match keys like
(MatchAllNode, torch.add) and (torch.nn.Conv2d, MatchAllNode)
Example Input:
(torch.add, (torch.nn.ReLU, torch.nn.Conv2d))
Example Output:
[(torch.add, (torch.nn.ReLU, torch.nn.Conv2d)),
(torch.add, (torch.nn.ReLU, MatchAllNode)),
(torch.add, (MatchAllNode, torch.nn.Conv2d)),
(torch.add, (MatchAllNode, MatchAllNode)),
(MatchAllNode, (torch.nn.ReLU, torch.nn.Conv2d)),
(MatchAllNode, (torch.nn.ReLU, MatchAllNode)),
(MatchAllNode, (MatchAllNode, torch.nn.Conv2d)),
(MatchAllNode, (MatchAllNode, MatchAllNode)),
]
"""
result = []
if isinstance(op_pattern, (tuple, list)):
sub_combs = []
for sub_pattern in op_pattern:
sub_combs.append(_get_valid_patterns(sub_pattern))
result = list(itertools.product(*sub_combs))
else:
result = [op_pattern, MatchAllNode]
return result
def get_fuser_method_new(
op_pattern: Pattern,
fuser_method_mapping: Dict[Pattern, Union[nn.Sequential, Callable]]):
""" This will be made defult after we deprecate the get_fuser_method
Would like to implement this first and have a separate PR for deprecation
"""
op_patterns = _get_valid_patterns(op_pattern)
fuser_method = None
for op_pattern in op_patterns:
fuser_method = fuser_method_mapping.get(op_pattern, None)
if fuser_method is not None:
break
assert fuser_method is not None, "did not find fuser method for: {} ".format(op_pattern)
return fuser_method