from typing import List, Union
from torchgen.api import cpp
from torchgen.api.types import (
ArgName,
ArrayRefCType,
BaseCType,
Binding,
ConstRefCType,
dimnameListT,
intArrayRefT,
iOptTensorListRefT,
iTensorListRefT,
NamedCType,
OptionalCType,
optionalIntArrayRefT,
optionalScalarRefT,
optionalTensorRefT,
scalarT,
tensorT,
)
from torchgen.model import (
Argument,
BaseTy,
BaseType,
ListType,
NativeFunctionsGroup,
OptionalType,
SelfArgument,
TensorOptionsArguments,
Type,
)
from torchgen.utils import assert_never
# This file describes the translation of JIT schema to the structured functions API.
# This is similar to native API, but a number of historical problems with native
# API have been fixed.
# Translation of types occuring in JIT arguments to a C++ argument type.
# NB: For now, mutable doesn't do anything; but it could if we make
# some more nominal types
def argumenttype_type(t: Type, *, mutable: bool, binds: ArgName) -> NamedCType:
# If it's a value type, do the value type translation
# NB: structured kernels ALWAYS have symint off, since they involve actual
# kernels that require real ints. The one exception is the
# CompositeExplicitAutograd and the meta function (which could
# hypothetically be SymInt), but for simplicity we plan for these to just
# be handled in Python
r = cpp.valuetype_type(t, symint=False, binds=binds)
if r is not None:
return r
if isinstance(t, BaseType):
if t.name == BaseTy.Tensor:
return NamedCType(binds, ConstRefCType(BaseCType(tensorT)))
elif t.name == BaseTy.Scalar:
return NamedCType(binds, ConstRefCType(BaseCType(scalarT)))
else:
raise AssertionError(f"base type should have been value type {t}")
elif isinstance(t, OptionalType):
if t.elem == BaseType(BaseTy.Tensor):
return NamedCType(binds, BaseCType(optionalTensorRefT))
elif t.elem == BaseType(BaseTy.Scalar):
return NamedCType(binds, BaseCType(optionalScalarRefT))
elif isinstance(t.elem, ListType) and str(t.elem.elem) == "int":
return NamedCType(binds, BaseCType(optionalIntArrayRefT))
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
return NamedCType(binds, OptionalCType(elem.type))
elif isinstance(t, ListType):
if t.elem == BaseType(BaseTy.Tensor):
return NamedCType(binds, ConstRefCType(BaseCType(iTensorListRefT)))
elif t.elem == OptionalType(BaseType(BaseTy.Tensor)):
return NamedCType(binds, BaseCType(iOptTensorListRefT))
# TODO: delete these special cases; see torchgen.api.cpp--these
# must be changed in tandem, but there are problems; see
# https://github.com/pytorch/pytorch/pull/51485
elif str(t.elem) == "int":
return NamedCType(binds, BaseCType(intArrayRefT))
elif str(t.elem) == "Dimname":
return NamedCType(binds, BaseCType(dimnameListT))
elem = argumenttype_type(t.elem, mutable=mutable, binds=binds)
return NamedCType(binds, ArrayRefCType(elem.type))
else:
raise AssertionError(f"unrecognized type {repr(t)}")
def argument_type(a: Argument, *, binds: ArgName) -> NamedCType:
return argumenttype_type(a.type, mutable=a.is_write, binds=binds)
# returns_type intentionally omitted, because structured kernels never "return";
# instead, they always indirectly report their outputs (in the case of a meta
# function, by calling set_output; in the case of an impl function, by writing
# directly into the provided out argument).
# Structured kernels are never defaulted
def argument(a: Union[Argument, SelfArgument, TensorOptionsArguments]) -> List[Binding]:
if isinstance(a, Argument):
return [
Binding(
nctype=argument_type(a, binds=a.name),
name=a.name,
default=None,
argument=a,
)
]
elif isinstance(a, SelfArgument):
return argument(a.argument)
elif isinstance(a, TensorOptionsArguments):
raise AssertionError("structured kernels don't support TensorOptions yet")
else:
assert_never(a)
def impl_arguments(g: NativeFunctionsGroup) -> List[Binding]:
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
if g.out.precomputed:
# A list of parameters for the impl function with
# certain parameters replaced with precomputed counterparts
# as specified in native_functions.yaml.
non_out_args_replaced: List[
Union[Argument, TensorOptionsArguments, SelfArgument]
] = []
for a in g.out.func.arguments.non_out:
if isinstance(a, Argument) and a.name in g.out.precomputed.replace:
# If a is in precompute.replace, append the parameters
# that should replace it onto non_out_args_replaced.
for replacement in g.out.precomputed.replace[a.name]:
non_out_args_replaced.append(replacement)
else:
# If not, push a as it is.
non_out_args_replaced.append(a)
args.extend(non_out_args_replaced)
# g.out.precomputed.add is the list of parameters that are added
# without replacement after the non out args and just before the out args
args.extend(g.out.precomputed.add)
else:
args.extend(g.out.func.arguments.non_out)
args.extend(g.out.func.arguments.out)
return [r for arg in args for r in argument(arg)]
def meta_arguments(g: NativeFunctionsGroup) -> List[Binding]:
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
args.extend(g.functional.func.arguments.non_out)
return [r for arg in args for r in argument(arg)]
def out_arguments(g: NativeFunctionsGroup) -> List[Binding]:
args: List[Union[Argument, TensorOptionsArguments, SelfArgument]] = []
args.extend(g.out.func.arguments.out)
return [r for arg in args for r in argument(arg)]