import torch
import warnings
from typing import Any
__all__ = ["detect_anomaly", "set_detect_anomaly"]
class detect_anomaly:
r"""Context-manager that enable anomaly detection for the autograd engine.
This does two things:
- Running the forward pass with detection enabled will allow the backward
pass to print the traceback of the forward operation that created the failing
backward function.
- If ``check_nan`` is ``True``, any backward computation that generate "nan"
value will raise an error. Default ``True``.
.. warning::
This mode should be enabled only for debugging as the different tests
will slow down your program execution.
Example:
>>> # xdoctest: +REQUIRES(env:TORCH_DOCTEST_ANOMOLY)
>>> import torch
>>> from torch import autograd
>>> class MyFunc(autograd.Function):
... @staticmethod
... def forward(ctx, inp):
... return inp.clone()
... @staticmethod
... def backward(ctx, gO):
... # Error during the backward pass
... raise RuntimeError("Some error in backward")
... return gO.clone()
>>> def run_fn(a):
... out = MyFunc.apply(a)
... return out.sum()
>>> inp = torch.rand(10, 10, requires_grad=True)
>>> out = run_fn(inp)
>>> out.backward()
Traceback (most recent call last):
File "<stdin>", line 1, in <module>
File "/your/pytorch/install/torch/_tensor.py", line 93, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph)
File "/your/pytorch/install/torch/autograd/__init__.py", line 90, in backward
allow_unreachable=True) # allow_unreachable flag
File "/your/pytorch/install/torch/autograd/function.py", line 76, in apply
return self._forward_cls.backward(self, *args)
File "<stdin>", line 8, in backward
RuntimeError: Some error in backward
>>> with autograd.detect_anomaly():
... inp = torch.rand(10, 10, requires_grad=True)
... out = run_fn(inp)
... out.backward()
Traceback of forward call that caused the error:
File "tmp.py", line 53, in <module>
out = run_fn(inp)
File "tmp.py", line 44, in run_fn
out = MyFunc.apply(a)
Traceback (most recent call last):
File "<stdin>", line 4, in <module>
File "/your/pytorch/install/torch/_tensor.py", line 93, in backward
torch.autograd.backward(self, gradient, retain_graph, create_graph)
File "/your/pytorch/install/torch/autograd/__init__.py", line 90, in backward
allow_unreachable=True) # allow_unreachable flag
File "/your/pytorch/install/torch/autograd/function.py", line 76, in apply
return self._forward_cls.backward(self, *args)
File "<stdin>", line 8, in backward
RuntimeError: Some error in backward
"""
def __init__(self, check_nan=True) -> None:
self.prev = torch.is_anomaly_enabled()
self.check_nan = check_nan
self.prev_check_nan = torch.is_anomaly_check_nan_enabled()
warnings.warn('Anomaly Detection has been enabled. '
'This mode will increase the runtime '
'and should only be enabled for debugging.', stacklevel=2)
def __enter__(self) -> None:
torch.set_anomaly_enabled(True, self.check_nan)
def __exit__(self, *args: Any) -> None:
torch.set_anomaly_enabled(self.prev, self.prev_check_nan)
class set_detect_anomaly:
r"""Context-manager that sets the anomaly detection for the autograd engine on or off.
``set_detect_anomaly`` will enable or disable the autograd anomaly detection
based on its argument :attr:`mode`.
It can be used as a context-manager or as a function.
See ``detect_anomaly`` above for details of the anomaly detection behaviour.
Args:
mode (bool): Flag whether to enable anomaly detection (``True``),
or disable (``False``).
check_nan (bool): Flag whether to raise an error when the backward
generate "nan"
"""
def __init__(self, mode: bool, check_nan: bool = True) -> None:
self.prev = torch.is_anomaly_enabled()
self.prev_check_nan = torch.is_anomaly_check_nan_enabled()
torch.set_anomaly_enabled(mode, check_nan)
def __enter__(self) -> None:
pass
def __exit__(self, *args: Any) -> None:
torch.set_anomaly_enabled(self.prev, self.prev_check_nan)