import contextlib
import warnings
from enum import auto, Enum
from itertools import accumulate, chain
from typing import (
Any,
Dict,
Generator,
Iterator,
List,
NamedTuple,
no_type_check,
Optional,
Sequence,
Set,
Tuple,
Union,
)
import torch
import torch.distributed as dist
import torch.nn as nn
import torch.nn.functional as F
from torch import Tensor
from torch.distributed._tensor import DTensor
from torch.distributed.fsdp._common_utils import (
_set_fsdp_flattened,
HandleTrainingState,
)
from ._fsdp_extensions import _ext_post_unflatten_transform, _ext_pre_flatten_transform
from ._utils import (
_alloc_storage,
_free_storage,
_no_dispatch_record_stream,
_same_storage,
p_assert,
)
__all__ = [
"FlatParameter",
"FlatParamHandle",
"FlatParamShardMetadata",
"ParamInfo",
"SharedParamInfo",
"HandleShardingStrategy",
]
"""
[Note: Fully Sharded Module]
We define the "fully sharded module" to be the original ``nn.Module`` that owns
a ``FlatParamHandle``. It is the *single* module logically responsible for the
*single* unshard/reshard pair for the handle's ``FlatParameter`` for a given
forward or backward pass. The fully sharded module should be passed to the
``FlatParamHandle`` constructor.
For the wrapper code path:
- The ``FullyShardedDataParallel`` module wrapping the fully sharded module
runs the unshard/reshard on behalf of the fully sharded module by overriding
``nn.Module.forward``.
- The fully sharded module is exactly the module passed to the
``FullyShardedDataParallel`` constructor's ``module`` argument.
For the non-wrapper code path:
- Hooks registered on the fully sharded module run the unshard/reshard.
- The fully sharded module may either be the direct argument to ``fully_shard``
or a submodule chosen by the provided wrapping policy.
"""
class ParamInfo(NamedTuple):
"""Information for an original module parameter."""
param_name: str # unprefixed
module: nn.Module
module_name: str
class SharedParamInfo(NamedTuple):
"""
Additional information for a shared parameter.
For each shared parameter, we designate one module and its parameter
variable to be the primary owner, determined as the first one encountered
in the parameter walk. These are prefixed with "prim". The primary module
and parameter do not have their own :class:`SharedParamInfo` instance.
"""
param_name: str # unprefixed
module: nn.Module
module_name: str
prim_param_name: str # unprefixed
prim_module: nn.Module
prim_module_name: str
class FlatParamShardMetadata(NamedTuple):
"""
This holds metadata specific to this rank's shard of the flattened
parameter.
Attributes:
param_names (Tuple[str, ...]): Prefixed parameter names of this rank's
shard of the parameters; see :class:`FlatParameter`.
param_shapes (Tuple[torch.Size, ...]): Parameter shapes of this rank's
shard of the parameters; see :class:`FlatParameter`.
param_numels (Tuple[int, ...]): Parameter numels of this rank's shard
of the parameters; see :class:`FlatParameter`.
param_offsets (Tuple[Tuple[int, int], ...]): [start, end] offsets (in
units of numels) giving this rank's part of each flattened
original module parameter.
"""
param_names: Tuple[str, ...]
param_shapes: Tuple[torch.Size, ...]
param_numels: Tuple[int, ...]
param_offsets: Tuple[Tuple[int, int], ...]
# TODO (awgu): Prefix these with "Handle" for now to avoid circular imports and
# inadvertent misuses; coalesce with those in fully_sharded_data_parallel.py
# later
class HandleShardingStrategy(Enum):
FULL_SHARD = auto()
SHARD_GRAD_OP = auto()
NO_SHARD = auto()
HYBRID_SHARD = auto()
_HYBRID_SHARD_ZERO2 = auto()
class FlatParameter(nn.Parameter):
"""
This is the flattened parameter used by :class:`FullyShardedDataParallel`.
It is comprised of one or more original parameters, which are flattened
and concatenated to construct the flattened parameter.
Under the current design, this parameter logically represents both the
unsharded and sharded flattened parameter, and its data changes storages
dynamically.
- In the :class:`FullyShardedDataParallel` constructor, the parameter
is initialized as unsharded and then sharded in-place.
- At runtime, the parameter is lazily (re)-initialized. The sharded
parameter data is saved in ``self._local_shard``, and a new ``Tensor``
``self._full_param_padded`` is created, which is the all-gather
destination and owns the unsharded parameter storage thereafter. (See
:meth:`FlatParamHandle.init_flat_param_attributes`.)
- Throughout runtime, the parameter data changes storages as needed,
e.g. to the sharded flattened parameter, reduced-precision sharded
flattened parameter, or the unsharded flattened parameter.
Attributes:
_unpadded_unsharded_size (torch.Size): Unsharded flattened parameter's
size without padding.
_padded_unsharded_size (torch.Size): Unsharded flattened parameter's
size with padding. This is only set for sharded strategies since
they require padding for the all-gather.
_sharded_size (torch.Size): Sharded flattened parameter's size with
padding. This is also set for ``NO_SHARD``, in which case it is the
same as the unsharded sizes. (We omit "padded" because there is no
analogous unpadded one.)
_param_infos (Tuple[ParamInfo, ...]): Each parameter's parameter info
entry; see :class:`ParamInfo`.
_numels (Tuple[int, ...]): Each parameter's numel.
_shapes (Tuple[torch.Size, ...]): Each parameter's shape.
_fqns (Tuple[str, ...]): The original parameters' FQNs prefixed from
the owning handle's ``_fully_sharded_module``. The names are
guaranteed to be unique within the subtree rooted at that module.
_num_params (int): Number of original parameters flattened into this
flattened parameter; this is the length of ``_param_infos``,
``_numels``, ``_shapes``, and ``_fqns``.
_shared_param_infos (Tuple[SharedParamInfo, ...]): Shared parameter
info entries; see :class:`SharedParamInfo`.
_param_extensions (Tuple[Optional[Any], ...]): Parameter extensions
(i.e. some per-parameter state) used to customize pre-flatten and
post-unflatten behavior. This is experimental, and users should not
depend on its existence in the future.
_modules (Set[nn.Module]): Modules that contain some original parameter
that is flattened into the ``FlatParameter``.
_shard_param_offsets (List[Tuple[int, int])): [start, end] offsets (in
units of numel) giving this rank's part of each flattened original
module parameter; for any parameter ``p`` that is not sharded
across ranks, this will be [0, ``p.numel()``-1].
_shard_indices (Tuple[int, int]): [start, end] indices (in units of
parameters) for this rank's shard of the original model parameters,
where the parameters follow the order in which they were originally
flattened; this indexes appropriately into any data structure that
follows the flattening order (e.g. ``_param_infos``, ``_numels``,
etc.).
_shard_numel_padded (int): Numel padded for this rank's sharded
flattened parameter.
_local_shard (Tensor): Sharded flattened parameter with padding if
using a sharded strategy. If using ``NO_SHARD``, then this is the
unpadded unsharded flattened parameter, and there is no notion of a
sharded flattened parameter or padded unsharded flattened
parameter.
_full_param_padded (Tensor): Unsharded flattened parameter with
padding. This is not defined for ``NO_SHARD``. When using mixed
precision for parameters, this has the low precision.
_full_prec_full_param_padded (Tensor): Full precision unsharded
flattened parameter with padding. This is used for unsharding
outside of computation when using mixed precision for parameters.
This is never defined for ``NO_SHARD``.
_post_backward_hook_state (Tuple[AccumulateGrad, RemovableHandle]):
Flattened parameter's :class:`AccumulateGrad` object and
post-backward hook handle.
_mp_shard (Tensor): Low precision sharded flattened parameter with
padding. This is only defined when parameter mixed precision is
enabled. For ``NO_SHARD``, this is used for computation.
_cpu_grad (Tensor): Sharded gradient with padding stored on CPU.
This is only defined when offloading parameters is enabled.
_saved_grad_shard (Tensor): Sharded gradient with padding from previous
iterations for gradient accumulation without :meth:`no_sync`.
_params (Optional[List[nn.Parameter]]): The original parameter
variables if ``use_orig_params=True`` and ``None`` otherwise.
_shared_params (Optional[List[nn.Parameter]]): The original shared
parameter variables if ``use_orig_params=True`` and ``None``
otherwise.
_tensors (Optional[List[Optional[Tensor]]]): This saves the ``Tensor``
views created in the forward and tracked by autograd when
``use_orig_params=True`` and is ``None`` otherwise. This is to
preserve those ``Tensor`` variables for the backward to ensure that
the ``FlatParameter`` 's ``AccumulateGrad`` object does not change
in which case the post-backward hook does not run. This is relevant
for cases like reentrant activation checkpointing.
_is_grad_none (Optional[List[bool]]): A mask over the original
parameters' gradients indicating if it is logically ``None`` or not
if ``use_orig_params=True`` and ``None`` otherwise. This is needed
because only some of the parameters may have ``None`` gradient, in
which case the ``FlatParameter`` gradient must be non-``None`` and
must use zeros to approximate those original ``None`` gradients.
This mask informs FSDP to set the original parameter gradients to
``None`` (instead of zeros) as needed.
"""
def _init_metadata(
self,
param_infos: List[ParamInfo],
numels: List[int],
shapes: List[torch.Size],
fqns: List[str],
shared_param_infos: List[SharedParamInfo],
param_extensions: List[Any],
params: Optional[List[nn.Parameter]],
shared_params: Optional[List[nn.Parameter]],
) -> None:
"""
Initializes attributes holding metadata about the original parameters
comprising the flattened parameter.
We expose this method separate from the constructor to keep the
constructor only responsible for the flattened parameter's tensor data.
This method should only be called once per model, while the constructor
may be called multiple times, e.g. when reloading from a checkpoint, in
which case only the tensor data needs to be passed to the constructor.
Since :meth:`load_state_dict` is implemented via :meth:`copy_`, the
metadata is correctly assumed to be unchanged.
Args:
See the Attributes in the class docstring.
"""
assert len(param_infos) == len(numels)
assert len(param_infos) == len(shapes)
assert len(param_infos) == len(fqns)
assert len(param_infos) == len(param_extensions)
self._num_params = len(param_infos)
self._param_infos = tuple(param_infos)
self._numels = tuple(numels)
self._shapes = tuple(shapes)
self._fqns = tuple(fqns)
self._shared_param_infos = tuple(shared_param_infos)
self._param_extensions = tuple(param_extensions)
self._modules = {pi.module for pi in self._param_infos}.union(
{spi.module for spi in self._shared_param_infos}
)
assert (params is None) == (shared_params is None)
if params is not None:
assert shared_params is not None and len(shared_params) == len(
shared_param_infos
)
self._params: Optional[List[nn.Parameter]] = params
self._shared_params: Optional[List[nn.Parameter]] = shared_params
# Mark the original parameters to avoid flattening them into
# another `FlatParameter` during recursive construction
for param in chain(self._params, self._shared_params):
_set_fsdp_flattened(param)
self._is_grad_none: Optional[List[bool]] = [
False for _ in range(len(params))
]
self._tensors: Optional[List[Optional[Tensor]]] = [
None for _ in range(len(self._params))
]
else:
self._params = None
self._shared_params = None
self._is_grad_none = None
self._tensors = None
self._unpadded_unsharded_size = self.size()
_set_fsdp_flattened(self)
# Tracks whether the `FlatParameter`'s post-backward hook has been
# called to modify the behavior of the post-backward callback
self._post_backward_called = False
class FlatParamHandle:
"""
This handle manages a flattened parameter (:class:`FlatParameter`). This
includes sharding and view management.
Args:
params (Sequence[nn.Parameter]): The parameters to use for the
flattened parameter.
fully_sharded_module (nn.Module): See [Note: Fully Sharded Module].
device (torch.device): The compute and communication device, which
should be a non-CPU device. We refer to it as the compute device.
sharding_strategy (ShardingStrategy): Sharding strategy to apply to
this handle's ``FlatParameter``.
offload_params (bool): Whether to offload the handle's
``FlatParameter`` to CPU.
mp_param_dtype (Optional[torch.dtype]): Parameter mixed precision
setting passed to the FSDP constructor.
mp_reduce_dtype (Optional[torch.dtype]): Gradient reduction mixed
precision setting passed to the FSDP constructor.
keep_low_precision_grads (bool): Whether to keep gradients in low
precision.
use_orig_params (bool): If ``True``, then FSDP preserves the original
parameter variables and returns them from ``named_parameters()``
(e.g. to support different optimizer hyperparameters within one
:class:`FlatParameter`). If ``False``, then FSDP reconstructs the
parameter every iteration and returns the :class:`FlatParameter` s
from ``named_parameters()``.
"""
##################
# INITIALIZATION #
##################
def __init__(
self,
params: Sequence[nn.Parameter],
fully_sharded_module: nn.Module,
device: torch.device,
Loading ...