Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torch   python

Repository URL to install this package:

Version: 2.0.1+cpu 

/ distributed / nn / jit / templates / remote_module_template.py

#!/usr/bin/python3


def get_remote_module_template(enable_moving_cpu_tensors_to_cuda: bool):
    return _TEMPLATE_PREFIX + (
        _REMOTE_FORWARD_TEMPLATE_ENABLE_MOVING_CPU_TENSORS_TO_CUDA
        if enable_moving_cpu_tensors_to_cuda
        else _REMOTE_FORWARD_TEMPLATE
    )


_TEMPLATE_PREFIX = """from typing import *

import torch
import torch.distributed.rpc as rpc
from torch import Tensor
from torch._jit_internal import Future
from torch.distributed.rpc import RRef
from typing import Tuple  # pyre-ignore: unused import


{assign_module_interface_cls}


def forward_async(self, {arg_types}){arrow_and_future_return_type}:
    args = (self.module_rref, self.device, self.is_device_map_set, {args})
    kwargs = {{{kwargs}}}
    return rpc.rpc_async(
        self.module_rref.owner(),
        _remote_forward,
        args,
        kwargs,
    )


def forward(self, {arg_types}){arrow_and_return_type}:
    args = (self.module_rref, self.device, self.is_device_map_set, {args})
    kwargs = {{{kwargs}}}
    ret_fut = rpc.rpc_async(
        self.module_rref.owner(),
        _remote_forward,
        args,
        kwargs,
    )
    return ret_fut.wait()


_generated_methods = [
    forward_async,
    forward,
]


{jit_script_decorator}
"""

# This template may cause typing error (the mismatch between ``Tuple[()]`` and ``Tuple[Any]``)
# even if the code is only used for instaniation but not execution.
# Therefore, only include handling moving CPU tensors to a cuda device if necessary.
# TODO: Merge these two templates together in the future once TorchScript syntax is improved.
_REMOTE_FORWARD_TEMPLATE_ENABLE_MOVING_CPU_TENSORS_TO_CUDA = """
def _remote_forward(
    module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, {arg_types}){arrow_and_return_type}:
    module = module_rref.local_value()
    device = torch.device(device)

    if device.type != "cuda":
        return module.forward({args}, {kwargs})

    # If the module is on a cuda device,
    # move any CPU tensor in args or kwargs to the same cuda device.
    # Since torch script does not support generator expression,
    # have to use concatenation instead of
    # ``tuple(i.to(device) if isinstance(i, Tensor) else i for i in *args)``.
    args = ({args},)
    out_args: Tuple[()] = ()
    for arg in args:
        arg = (arg.to(device),) if isinstance(arg, Tensor) else (arg,)
        out_args = out_args + arg

    kwargs = {{{kwargs}}}
    for k, v in kwargs.items():
        if isinstance(v, Tensor):
            kwargs[k] = kwargs[k].to(device)

    if is_device_map_set:
        return module.forward(*out_args, {kwargs})

    # If the device map is empty, then only CPU tensors are allowed to send over wire,
    # so have to move any GPU tensor to CPU in the output.
    # Since torch script does not support generator expression,
    # have to use concatenation instead of
    # ``tuple(i.cpu() if isinstance(i, Tensor) else i for i in module.forward(*out_args, {kwargs}))``.
    ret: Tuple[()] = ()
    for i in module.forward(*out_args, {kwargs}):
        i = (i.cpu(),) if isinstance(i, Tensor) else (i,)
        ret = ret + i
    return ret
"""

_REMOTE_FORWARD_TEMPLATE = """
def _remote_forward(
    module_rref: RRef[module_interface_cls], device: str, is_device_map_set: bool, {arg_types}){arrow_and_return_type}:
    module = module_rref.local_value()

    return module.forward({args}, {kwargs})
"""