#pragma once
#include <unordered_set>
#include <vector>
#include <ATen/core/symbol.h>
#include <c10/util/Exception.h>
#include <c10/util/hash.h>
namespace c10 {
/**
* class AliasInfo
*
* Data structure to hold aliasing information for an `Argument`. They can be
* nested to represent aliasing information on contained types.
*
* There is a `beforeSet` which describes the aliasing information before the
* operator executes, and an `afterSet` that describes aliasing info
* after execution.
*/
class AliasInfo {
public:
// Symbol for the set that can alias anything
static Symbol wildcardSet() {
static const Symbol wc = Symbol::fromQualString("alias::*");
return wc;
}
void setIsWrite(bool isWrite) {
isWrite_ = isWrite;
}
bool isWrite() const {
return isWrite_;
}
void addBeforeSet(Symbol aliasSet) {
beforeSets_.insert(aliasSet);
}
void addAfterSet(Symbol aliasSet) {
afterSets_.insert(aliasSet);
}
const std::unordered_set<Symbol>& beforeSets() const {
return beforeSets_;
}
const std::unordered_set<Symbol>& afterSets() const {
return afterSets_;
}
Symbol beforeSet() const {
AT_ASSERT(beforeSets_.size() == 1);
return *beforeSets_.begin();
}
bool isWildcardBefore() const {
return beforeSets_.count(wildcardSet()) != 0;
}
bool isWildcardAfter() const {
return afterSets_.count(wildcardSet()) != 0;
}
// the alias info for the contained types of the type
// e.g. if this is an annotation on List[T], `sets` refers to
// the alias sets that the list may be in
// while containedTypes()[0] refers to the sets that members of the list
// may be in
void addContainedType(AliasInfo aliasInfo) {
containedTypes_.push_back(std::move(aliasInfo));
}
const std::vector<AliasInfo>& containedTypes() const {
return containedTypes_;
}
private:
std::unordered_set<Symbol> beforeSets_;
std::unordered_set<Symbol> afterSets_;
std::vector<AliasInfo> containedTypes_;
bool isWrite_ = false;
};
inline bool operator==(const AliasInfo& lhs, const AliasInfo& rhs) {
return lhs.isWrite() == rhs.isWrite()
&& lhs.beforeSets() == rhs.beforeSets()
&& lhs.afterSets() == rhs.afterSets()
&& lhs.containedTypes() == rhs.containedTypes();
}
// this does match the way things are represented in the schema
inline std::ostream& operator<<(std::ostream& out, const AliasInfo& aliasInfo) {
out << "(";
bool first = true;
for (const auto& set : aliasInfo.beforeSets()) {
if (first) {
first = false;
} else {
out << "|";
}
out << set.toUnqualString();
}
if (aliasInfo.isWrite()) {
out << "!";
}
if (aliasInfo.beforeSets() != aliasInfo.afterSets()) {
out << " -> ";
first = true;
for (const auto& set : aliasInfo.afterSets()) {
if (first) {
first = false;
} else {
out << "|";
}
out << set.toUnqualString();
}
}
out << ")";
return out;
}
} // namespace c10
namespace std {
template <>
struct hash<c10::AliasInfo> {
size_t operator()(const c10::AliasInfo& aliasInfo) const {
auto hash = std::hash<bool>()(aliasInfo.isWrite());
// NOTE: for unordered_set hashes, we couldn't use hash_combine
// because hash_combine is order dependent. Instead, we choose to
// use XOR as the combining function as XOR is commutative.
size_t before_set_hash_seed = 0;
for (auto &e: aliasInfo.beforeSets()) {
auto symbol_hash = std::hash<c10::Symbol>()(e);
before_set_hash_seed = before_set_hash_seed ^ symbol_hash;
}
size_t after_set_hash_seed = 0;
for (auto &e: aliasInfo.afterSets()) {
auto symbol_hash = std::hash<c10::Symbol>()(e);
after_set_hash_seed = after_set_hash_seed ^ symbol_hash;
}
hash = c10::hash_combine(hash, before_set_hash_seed);
hash = c10::hash_combine(hash, after_set_hash_seed);
for (auto &e: aliasInfo.containedTypes()) {
auto contained_type_hash = std::hash<c10::AliasInfo>()(e);
hash = c10::hash_combine(hash, contained_type_hash);
}
return hash;
}
};
}