#pragma once
// DO NOT DEFINE STATIC DATA IN THIS HEADER!
// See Note [Do not compile initializers with AVX]
#include <c10/util/complex.h>
#include <c10/util/irange.h>
#include <ATen/cpu/vec/intrinsics.h>
#include <ATen/cpu/vec/vec_base.h>
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
#include <sleef.h>
#endif
namespace at {
namespace vec {
// See Note [CPU_CAPABILITY namespace]
inline namespace CPU_CAPABILITY {
#if defined(CPU_CAPABILITY_AVX2) && !defined(_MSC_VER)
template <> class Vectorized<c10::complex<float>> {
private:
__m256 values;
public:
using value_type = c10::complex<float>;
using size_type = int;
static constexpr size_type size() {
return 4;
}
Vectorized() {}
Vectorized(__m256 v) : values(v) {}
Vectorized(c10::complex<float> val) {
float real_value = val.real();
float imag_value = val.imag();
values = _mm256_setr_ps(real_value, imag_value,
real_value, imag_value,
real_value, imag_value,
real_value, imag_value
);
}
Vectorized(c10::complex<float> val1, c10::complex<float> val2, c10::complex<float> val3, c10::complex<float> val4) {
values = _mm256_setr_ps(val1.real(), val1.imag(),
val2.real(), val2.imag(),
val3.real(), val3.imag(),
val4.real(), val4.imag()
);
}
operator __m256() const {
return values;
}
template <int64_t mask>
static Vectorized<c10::complex<float>> blend(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
// convert c10::complex<V> index mask to V index mask: xy -> xxyy
static_assert(mask > -1 && mask < 16, "Unexpected mask range");
switch (mask) {
case 0:
return a;
case 1:
return _mm256_blend_ps(a.values, b.values, 0x03); //b0000 0001 = b0000 0011
case 2:
return _mm256_blend_ps(a.values, b.values, 0x0C); //b0000 0010 = b0000 1100
case 3:
return _mm256_blend_ps(a.values, b.values, 0x0F); //b0000 0011 = b0000 1111
case 4:
return _mm256_blend_ps(a.values, b.values, 0x30); //b0000 0100 = b0011 0000
case 5:
return _mm256_blend_ps(a.values, b.values, 0x33); //b0000 0101 = b0011 0011
case 6:
return _mm256_blend_ps(a.values, b.values, 0x3C); //b0000 0110 = b0011 1100
case 7:
return _mm256_blend_ps(a.values, b.values, 0x3F); //b0000 0111 = b0011 1111
case 8:
return _mm256_blend_ps(a.values, b.values, 0xC0); //b0000 1000 = b1100 0000
case 9:
return _mm256_blend_ps(a.values, b.values, 0xC3); //b0000 1001 = b1100 0011
case 10:
return _mm256_blend_ps(a.values, b.values, 0xCC); //b0000 1010 = b1100 1100
case 11:
return _mm256_blend_ps(a.values, b.values, 0xCF); //b0000 1011 = b1100 1111
case 12:
return _mm256_blend_ps(a.values, b.values, 0xF0); //b0000 1100 = b1111 0000
case 13:
return _mm256_blend_ps(a.values, b.values, 0xF3); //b0000 1101 = b1111 0011
case 14:
return _mm256_blend_ps(a.values, b.values, 0xFC); //b0000 1110 = b1111 1100
default: break;
}
return b;
}
static Vectorized<c10::complex<float>> blendv(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b,
const Vectorized<c10::complex<float>>& mask) {
// convert c10::complex<V> index mask to V index mask: xy -> xxyy
auto mask_ = _mm256_unpacklo_ps(mask.values, mask.values);
return _mm256_blendv_ps(a.values, b.values, mask_);
}
template<typename step_t>
static Vectorized<c10::complex<float>> arange(c10::complex<float> base = 0., step_t step = static_cast<step_t>(1)) {
return Vectorized<c10::complex<float>>(base,
base + step,
base + c10::complex<float>(2)*step,
base + c10::complex<float>(3)*step);
}
static Vectorized<c10::complex<float>> set(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b,
int64_t count = size()) {
switch (count) {
case 0:
return a;
case 1:
return blend<1>(a, b);
case 2:
return blend<3>(a, b);
case 3:
return blend<7>(a, b);
}
return b;
}
static Vectorized<c10::complex<float>> loadu(const void* ptr, int64_t count = size()) {
if (count == size())
return _mm256_loadu_ps(reinterpret_cast<const float*>(ptr));
__at_align__ float tmp_values[2*size()];
// Ensure uninitialized memory does not change the output value See https://github.com/pytorch/pytorch/issues/32502
// for more details. We do not initialize arrays to zero using "={0}" because gcc would compile it to two
// instructions while a loop would be compiled to one instruction.
for (const auto i : c10::irange(2*size())) {
tmp_values[i] = 0.0;
}
std::memcpy(
tmp_values,
reinterpret_cast<const float*>(ptr),
count * sizeof(c10::complex<float>));
return _mm256_load_ps(tmp_values);
}
void store(void* ptr, int count = size()) const {
if (count == size()) {
_mm256_storeu_ps(reinterpret_cast<float*>(ptr), values);
} else if (count > 0) {
float tmp_values[2*size()];
_mm256_storeu_ps(reinterpret_cast<float*>(tmp_values), values);
std::memcpy(ptr, tmp_values, count * sizeof(c10::complex<float>));
}
}
const c10::complex<float>& operator[](int idx) const = delete;
c10::complex<float>& operator[](int idx) = delete;
Vectorized<c10::complex<float>> map(c10::complex<float> (*const f)(const c10::complex<float> &)) const {
__at_align__ c10::complex<float> tmp[size()];
store(tmp);
for (const auto i : c10::irange(size())) {
tmp[i] = f(tmp[i]);
}
return loadu(tmp);
}
__m256 abs_2_() const {
auto val_2 = _mm256_mul_ps(values, values); // a*a b*b
auto ret = _mm256_hadd_ps(val_2, val_2); // a*a+b*b a*a+b*b
return _mm256_permute_ps(ret, 0xD8);
}
__m256 abs_() const {
return _mm256_sqrt_ps(abs_2_()); // abs abs
}
Vectorized<c10::complex<float>> abs() const {
const __m256 real_mask = _mm256_castsi256_ps(_mm256_setr_epi32(0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000));
return _mm256_and_ps(abs_(), real_mask); // abs 0
}
__m256 angle_() const {
//angle = atan2(b/a)
auto b_a = _mm256_permute_ps(values, 0xB1); // b a
return Sleef_atan2f8_u10(values, b_a); // 90-angle angle
}
Vectorized<c10::complex<float>> angle() const {
const __m256 real_mask = _mm256_castsi256_ps(_mm256_setr_epi32(0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000));
auto angle = _mm256_permute_ps(angle_(), 0xB1); // angle 90-angle
return _mm256_and_ps(angle, real_mask); // angle 0
}
Vectorized<c10::complex<float>> sgn() const {
auto abs = abs_();
auto zero = _mm256_setzero_ps();
auto mask = _mm256_cmp_ps(abs, zero, _CMP_EQ_OQ);
auto abs_val = Vectorized(abs);
auto div = values / abs_val.values; // x / abs(x)
return _mm256_blendv_ps(div, zero, mask);
}
__m256 real_() const {
const __m256 real_mask = _mm256_castsi256_ps(_mm256_setr_epi32(0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000,
0xFFFFFFFF, 0x00000000, 0xFFFFFFFF, 0x00000000));
return _mm256_and_ps(values, real_mask);
}
Vectorized<c10::complex<float>> real() const {
return real_();
}
__m256 imag_() const {
const __m256 imag_mask = _mm256_castsi256_ps(_mm256_setr_epi32(0x00000000, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF,
0x00000000, 0xFFFFFFFF, 0x00000000, 0xFFFFFFFF));
return _mm256_and_ps(values, imag_mask);
}
Vectorized<c10::complex<float>> imag() const {
return _mm256_permute_ps(imag_(), 0xB1); //b a
}
__m256 conj_() const {
const __m256 sign_mask = _mm256_setr_ps(0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0);
return _mm256_xor_ps(values, sign_mask); // a -b
}
Vectorized<c10::complex<float>> conj() const {
return conj_();
}
Vectorized<c10::complex<float>> log() const {
// Most trigonomic ops use the log() op to improve complex number performance.
return map(std::log);
}
Vectorized<c10::complex<float>> log2() const {
const __m256 log2_ = _mm256_set1_ps(std::log(2));
return _mm256_div_ps(log(), log2_);
}
Vectorized<c10::complex<float>> log10() const {
const __m256 log10_ = _mm256_set1_ps(std::log(10));
return _mm256_div_ps(log(), log10_);
}
Vectorized<c10::complex<float>> log1p() const {
return map(std::log1p);
}
Vectorized<c10::complex<float>> asin() const {
// asin(x)
// = -i*ln(iz + sqrt(1 -z^2))
// = -i*ln((ai - b) + sqrt(1 - (a + bi)*(a + bi)))
// = -i*ln((-b + ai) + sqrt(1 - (a**2 - b**2) - 2*abi))
const __m256 one = _mm256_set1_ps(1);
auto conj = conj_();
auto b_a = _mm256_permute_ps(conj, 0xB1); //-b a
auto ab = _mm256_mul_ps(conj, b_a); //-ab -ab
auto im = _mm256_add_ps(ab, ab); //-2ab -2ab
auto val_2 = _mm256_mul_ps(values, values); // a*a b*b
auto re = _mm256_hsub_ps(val_2, _mm256_permute_ps(val_2, 0xB1)); // a*a-b*b b*b-a*a
re = _mm256_permute_ps(re, 0xD8);
re = _mm256_sub_ps(one, re);
auto root = Vectorized(_mm256_blend_ps(re, im, 0xAA)).sqrt(); //sqrt(re + i*im)
auto ln = Vectorized(_mm256_add_ps(b_a, root)).log(); //ln(iz + sqrt())
return Vectorized(_mm256_permute_ps(ln.values, 0xB1)).conj(); //-i*ln()
}
Vectorized<c10::complex<float>> acos() const {
return map(std::acos);
}
Vectorized<c10::complex<float>> atan() const;
Vectorized<c10::complex<float>> atan2(const Vectorized<c10::complex<float>>& /*b*/) const {
AT_ERROR("not supported for complex numbers");
}
Vectorized<c10::complex<float>> erf() const {
AT_ERROR("not supported for complex numbers");
}
Vectorized<c10::complex<float>> erfc() const {
AT_ERROR("not supported for complex numbers");
}
Vectorized<c10::complex<float>> exp() const {
//exp(a + bi)
// = exp(a)*(cos(b) + sin(b)i)
auto exp = Sleef_expf8_u10(values); //exp(a) exp(b)
exp = _mm256_blend_ps(exp, _mm256_permute_ps(exp, 0xB1), 0xAA); //exp(a) exp(a)
auto sin_cos = Sleef_sincosf8_u10(values); //[sin(a), cos(a)] [sin(b), cos(b)]
auto cos_sin = _mm256_blend_ps(_mm256_permute_ps(sin_cos.y, 0xB1),
sin_cos.x, 0xAA); //cos(b) sin(b)
return _mm256_mul_ps(exp, cos_sin);
}
Vectorized<c10::complex<float>> exp2() const {
// Use identity 2**x = exp(log(2) * x)
const __m256 ln_2 = _mm256_set1_ps(c10::ln_2<float>);
Vectorized<c10::complex<float>> scaled_values = _mm256_mul_ps(values, ln_2);
return scaled_values.exp();
}
Vectorized<c10::complex<float>> expm1() const {
AT_ERROR("not supported for complex numbers");
}
Vectorized<c10::complex<float>> sin() const {
return map(std::sin);
}
Vectorized<c10::complex<float>> sinh() const {
return map(std::sinh);
}
Vectorized<c10::complex<float>> cos() const {
return map(std::cos);
}
Vectorized<c10::complex<float>> cosh() const {
return map(std::cosh);
}
Vectorized<c10::complex<float>> ceil() const {
return _mm256_ceil_ps(values);
}
Vectorized<c10::complex<float>> floor() const {
return _mm256_floor_ps(values);
}
Vectorized<c10::complex<float>> hypot(const Vectorized<c10::complex<float>>& /*b*/) const {
AT_ERROR("not supported for complex numbers");
}
Vectorized<c10::complex<float>> igamma(const Vectorized<c10::complex<float>>& /*x*/) const {
AT_ERROR("not supported for complex numbers");
}
Vectorized<c10::complex<float>> igammac(const Vectorized<c10::complex<float>>& /*x*/) const {
AT_ERROR("not supported for complex numbers");
}
Vectorized<c10::complex<float>> neg() const {
auto zero = _mm256_setzero_ps();
return _mm256_sub_ps(zero, values);
}
Vectorized<c10::complex<float>> nextafter(const Vectorized<c10::complex<float>>& /*b*/) const {
AT_ERROR("not supported for complex numbers");
}
Vectorized<c10::complex<float>> round() const {
return _mm256_round_ps(values, (_MM_FROUND_TO_NEAREST_INT | _MM_FROUND_NO_EXC));
}
Vectorized<c10::complex<float>> tan() const {
return map(std::tan);
}
Vectorized<c10::complex<float>> tanh() const {
return map(std::tanh);
}
Vectorized<c10::complex<float>> trunc() const {
return _mm256_round_ps(values, (_MM_FROUND_TO_ZERO | _MM_FROUND_NO_EXC));
}
Vectorized<c10::complex<float>> sqrt() const {
return map(std::sqrt);
}
Vectorized<c10::complex<float>> reciprocal() const;
Vectorized<c10::complex<float>> rsqrt() const {
return sqrt().reciprocal();
}
Vectorized<c10::complex<float>> pow(const Vectorized<c10::complex<float>> &exp) const {
__at_align__ c10::complex<float> x_tmp[size()];
__at_align__ c10::complex<float> y_tmp[size()];
store(x_tmp);
exp.store(y_tmp);
for (const auto i : c10::irange(size())) {
x_tmp[i] = std::pow(x_tmp[i], y_tmp[i]);
}
return loadu(x_tmp);
}
// Comparison using the _CMP_**_OQ predicate.
// `O`: get false if an operand is NaN
// `Q`: do not raise if an operand is NaN
Vectorized<c10::complex<float>> operator==(const Vectorized<c10::complex<float>>& other) const {
return _mm256_cmp_ps(values, other.values, _CMP_EQ_OQ);
}
Vectorized<c10::complex<float>> operator!=(const Vectorized<c10::complex<float>>& other) const {
return _mm256_cmp_ps(values, other.values, _CMP_NEQ_UQ);
}
Vectorized<c10::complex<float>> operator<(const Vectorized<c10::complex<float>>& /*other*/) const {
TORCH_CHECK(false, "not supported for complex numbers");
}
Vectorized<c10::complex<float>> operator<=(const Vectorized<c10::complex<float>>& /*other*/) const {
TORCH_CHECK(false, "not supported for complex numbers");
}
Vectorized<c10::complex<float>> operator>(const Vectorized<c10::complex<float>>& /*other*/) const {
TORCH_CHECK(false, "not supported for complex numbers");
}
Vectorized<c10::complex<float>> operator>=(const Vectorized<c10::complex<float>>& /*other*/) const {
TORCH_CHECK(false, "not supported for complex numbers");
}
Vectorized<c10::complex<float>> eq(const Vectorized<c10::complex<float>>& other) const;
Vectorized<c10::complex<float>> ne(const Vectorized<c10::complex<float>>& other) const;
Vectorized<c10::complex<float>> lt(const Vectorized<c10::complex<float>>& /*other*/) const {
TORCH_CHECK(false, "not supported for complex numbers");
}
Vectorized<c10::complex<float>> le(const Vectorized<c10::complex<float>>& /*other*/) const {
TORCH_CHECK(false, "not supported for complex numbers");
}
Vectorized<c10::complex<float>> gt(const Vectorized<c10::complex<float>>& /*other*/) const {
TORCH_CHECK(false, "not supported for complex numbers");
}
Vectorized<c10::complex<float>> ge(const Vectorized<c10::complex<float>>& /*other*/) const {
TORCH_CHECK(false, "not supported for complex numbers");
}
};
template <> Vectorized<c10::complex<float>> inline operator+(const Vectorized<c10::complex<float>> &a, const Vectorized<c10::complex<float>> &b) {
return _mm256_add_ps(a, b);
}
template <> Vectorized<c10::complex<float>> inline operator-(const Vectorized<c10::complex<float>> &a, const Vectorized<c10::complex<float>> &b) {
return _mm256_sub_ps(a, b);
}
template <> Vectorized<c10::complex<float>> inline operator*(const Vectorized<c10::complex<float>> &a, const Vectorized<c10::complex<float>> &b) {
//(a + bi) * (c + di) = (ac - bd) + (ad + bc)i
const __m256 sign_mask = _mm256_setr_ps(0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0);
auto ac_bd = _mm256_mul_ps(a, b); //ac bd
auto d_c = _mm256_permute_ps(b, 0xB1); //d c
d_c = _mm256_xor_ps(sign_mask, d_c); //d -c
auto ad_bc = _mm256_mul_ps(a, d_c); //ad -bc
auto ret = _mm256_hsub_ps(ac_bd, ad_bc); //ac - bd ad + bc
ret = _mm256_permute_ps(ret, 0xD8);
return ret;
}
template <> Vectorized<c10::complex<float>> inline operator/(const Vectorized<c10::complex<float>> &a, const Vectorized<c10::complex<float>> &b) {
//re + im*i = (a + bi) / (c + di)
auto mask = _mm256_set1_ps(-0.f);
auto fabs_cd = _mm256_andnot_ps(mask, b); // |c| |d|
auto fabs_dc = _mm256_permute_ps(fabs_cd, 0xB1); // |d| |c|
auto scale = _mm256_rcp_ps(_mm256_max_ps(fabs_cd, fabs_dc)); // 1/sc 1/sc
auto a2 = _mm256_mul_ps(a, scale); // a/sc b/sc
auto b2 = _mm256_mul_ps(b, scale); // c/sc d/sc
auto acbd2 = _mm256_mul_ps(a2, b2);
const __m256 sign_mask = _mm256_setr_ps(-0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0);
auto dc2 = _mm256_permute_ps(b2, 0xB1); // d/sc c/sc
dc2 = _mm256_xor_ps(sign_mask, dc2); // -d/|c,d| c/sc
auto adbc2 = _mm256_mul_ps(a2, dc2); //-ad/sc^2 bc/sc^2
auto res2 = _mm256_hadd_ps(acbd2, adbc2); //(ac+bd)/sc^2 (bc-ad)/sc^2
res2 = _mm256_permute_ps(res2, 0xD8);
// get the denominator
auto denom2 = Vectorized<c10::complex<float>>(b2).abs_2_(); // (c^2+d^2)/sc^2 (c^2+d^2)/sc^2
res2 = _mm256_div_ps(res2, denom2);
return res2;
}
// reciprocal. Implement this here so we can use multiplication.
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::reciprocal() const {
//re + im*i = (a + bi) / (c + di)
//re = (ac + bd)/abs_2() = c/abs_2()
//im = (bc - ad)/abs_2() = d/abs_2()
const __m256 sign_mask = _mm256_setr_ps(0.0, -0.0, 0.0, -0.0, 0.0, -0.0, 0.0, -0.0);
auto c_d = _mm256_xor_ps(sign_mask, values); //c -d
return _mm256_div_ps(c_d, abs_2_());
}
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::atan() const {
// atan(x) = i/2 * ln((i + z)/(i - z))
const __m256 i = _mm256_setr_ps(0.0, 1.0, 0.0, 1.0, 0.0, 1.0, 0.0, 1.0);
const Vectorized i_half = _mm256_setr_ps(0.0, 0.5, 0.0, 0.5, 0.0, 0.5, 0.0, 0.5);
auto sum = Vectorized(_mm256_add_ps(i, values)); // a 1+b
auto sub = Vectorized(_mm256_sub_ps(i, values)); // -a 1-b
auto ln = (sum/sub).log(); // ln((i + z)/(i - z))
return i_half*ln; // i/2*ln()
}
template <>
Vectorized<c10::complex<float>> inline maximum(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
auto abs_a = a.abs_2_();
auto abs_b = b.abs_2_();
auto mask = _mm256_cmp_ps(abs_a, abs_b, _CMP_LT_OQ);
auto max = _mm256_blendv_ps(a, b, mask);
// Exploit the fact that all-ones is a NaN.
auto isnan = _mm256_cmp_ps(abs_a, abs_b, _CMP_UNORD_Q);
return _mm256_or_ps(max, isnan);
}
template <>
Vectorized<c10::complex<float>> inline minimum(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
auto abs_a = a.abs_2_();
auto abs_b = b.abs_2_();
auto mask = _mm256_cmp_ps(abs_a, abs_b, _CMP_GT_OQ);
auto min = _mm256_blendv_ps(a, b, mask);
// Exploit the fact that all-ones is a NaN.
auto isnan = _mm256_cmp_ps(abs_a, abs_b, _CMP_UNORD_Q);
return _mm256_or_ps(min, isnan);
}
template <>
Vectorized<c10::complex<float>> inline operator&(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
return _mm256_and_ps(a, b);
}
template <>
Vectorized<c10::complex<float>> inline operator|(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
return _mm256_or_ps(a, b);
}
template <>
Vectorized<c10::complex<float>> inline operator^(const Vectorized<c10::complex<float>>& a, const Vectorized<c10::complex<float>>& b) {
return _mm256_xor_ps(a, b);
}
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::eq(
const Vectorized<c10::complex<float>>& other) const {
return (*this == other) & Vectorized<c10::complex<float>>(_mm256_set1_ps(1.0f));
}
inline Vectorized<c10::complex<float>> Vectorized<c10::complex<float>>::ne(
const Vectorized<c10::complex<float>>& other) const {
return (*this != other) & Vectorized<c10::complex<float>>(_mm256_set1_ps(1.0f));
}
#endif
}}}