Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torch   python

Repository URL to install this package:

Version: 2.0.1+cpu 

/ include / ATen / native / Resize.h

#pragma once

#include <ATen/core/Tensor.h>
#include <ATen/native/ResizeCommon.h>
#include <ATen/EmptyTensor.h>
#include <ATen/TensorUtils.h>

#include <c10/core/CPUAllocator.h>

#include <utility>


namespace at { namespace native {

// TODO: make all operations that resize given outputs use this function
//   for consistency and maintainability.
//   Some operations like `cat` might not be able to make the use of
//   resize_output directly. For more details to understand how it works in `cat`,
//   see https://github.com/pytorch/pytorch/pull/62560#discussion_r687363362
// Resizes outputs
// Functions accepting output tensors, like with the "out" kwarg, should
//   call this function to handle resizing their output tensor.
// Issues a warning if the output tensor has one or more elements and
//   needs resizing
// NOTE: In the future the warning will become an error
// Returns a bool saying whether or not the resize actually happened or not
TORCH_API bool resize_output(const Tensor& output, IntArrayRef shape);
TORCH_API bool resize_output_symint(const Tensor& output, SymIntArrayRef shape);

// Utility for resize_output
//  Returns a bool saying resize should happen or not and
//  raises a warning if resizing for one or more elements
TORCH_API bool resize_output_check(const Tensor& output, IntArrayRef shape);
TORCH_API bool resize_output_check_symint(const Tensor& output, SymIntArrayRef shape);

TORCH_API void resize_bytes_cpu(StorageImpl* storage, size_t size_bytes);

static inline void maybe_resize_storage_cpu(TensorImpl* self, size_t new_size_bytes) {
  // It does not make sense to try to resize a storage
  // to hold 0 elements, and this can break
  // if storage_offset is positive but
  // new_size is 0, so just bail in that case
  // (same comment is in cuda/Resize.h)
  if (self->numel() == 0) {
    return;
  }

  const Storage& storage = self->unsafe_storage();
  if (!storage) {
    auto new_storage = c10::make_intrusive<StorageImpl>(
        StorageImpl::use_byte_size_t(),
        new_size_bytes,
        c10::GetCPUAllocator(),
        true);
    self->set_storage_keep_dtype(std::move(new_storage));
  } else if (new_size_bytes > storage.nbytes()) {
    resize_bytes_cpu(storage.unsafeGetStorageImpl(), new_size_bytes);
  }
}

TORCH_API TensorImpl* resize_impl_cpu_(
    TensorImpl* self,
    IntArrayRef size,
    at::OptionalIntArrayRef stride,
    bool resize_storage = true);

template <typename T>
T maybe_convert_symint(c10::SymInt) = delete;

template <>
inline c10::SymInt maybe_convert_symint(c10::SymInt x) { return x; }

template <>
inline int64_t maybe_convert_symint(c10::SymInt x) { return x.expect_int(); }

template <typename T>
static inline void checkInBoundsForStorage(
    ArrayRef<T> size,
    ArrayRef<T> stride,
    T storage_offset,
    const caffe2::TypeMeta data_type,
    const Storage& new_storage) {
  T storage_size_bytes =
      at::detail::computeStorageNbytes(size, stride, data_type.itemsize());
  T storage_offset_bytes = storage_offset * data_type.itemsize();
  if (storage_size_bytes == 0) {
    // NB: (a tensor with arbitrary 0 dims)'s storage can have any numel.
    return;
  }
  T new_storage_size_bytes = maybe_convert_symint<T>(new_storage.sym_nbytes());
  TORCH_CHECK(
      storage_size_bytes + storage_offset_bytes <= new_storage_size_bytes,
      "setStorage: sizes ",
      size,
      ", strides ",
      stride,
      ","
      " storage offset ",
      storage_offset,
      ", and itemsize ",
      data_type.itemsize(),
      " requiring a storage size of ",
      storage_size_bytes + storage_offset_bytes,
      " are out of bounds for storage of size ",
      new_storage_size_bytes);
}

template <typename T>
static inline void checkSetStorage(Tensor& result, Storage storage, T storage_offset,
                                   ArrayRef<T> size, ArrayRef<T> stride) {
  // FIXME: stride should be optional
  if (stride.data()) {
    TORCH_CHECK(size.size() == stride.size(), "unequal size length (", size.size(),
                                              ") and stride length (", stride.size(), ")");
  }

#ifdef DEBUG
  TORCH_CHECK(size.size() <= INT_MAX, "size length (", size.size(), ") greater than INT_MAX");
#endif

  // storage: note this can't be replaced with result.set_(storage) as the semantics of that
  // function is to set the tensor size to be equal to the size of the storage.
  if (!result.storage().is_alias_of(storage)) {
    // Caffe2 might have tensors whose storages are null, but we
    // don't allow it in PyTorch.
    TORCH_INTERNAL_ASSERT(storage);
    TORCH_INTERNAL_ASSERT(result.storage());

    // We used to allow this, but this breaks device caching.
    // Let's put an actual error message for this one.
    TORCH_CHECK(result.storage().device() == storage.device(),
                "Attempted to set the storage of a tensor on device \"", result.storage().device(),
                "\" to a storage on different device \"", storage.device(),
                "\".  This is no longer allowed; the devices must match.");
    result.unsafeGetTensorImpl()->set_storage_keep_dtype(std::move(storage));
  }

  // storageOffset
  TORCH_CHECK(storage_offset >= 0, "Tensor: invalid storage offset ", storage_offset);
}

/**
 * Set self's sizes, strides, and storage_offset.
 * (size, stride, storage_offset) must be in bounds for self's storage.
 */
template <typename T>
inline void setStrided(
    const Tensor& self,
    ArrayRef<T> size,
    ArrayRef<T> stride,
    T storage_offset) {
  TORCH_CHECK(size.size() == stride.size(), "mismatch in length of strides and shape");
  for (const auto& val : stride) {
    TORCH_CHECK(val >= 0,
                "as_strided: Negative strides are not supported at the moment, "
                "got strides: ", stride);
  }

  auto* self_ = self.unsafeGetTensorImpl();
  checkInBoundsForStorage(
      size, stride, storage_offset, self_->dtype(), self_->storage());

  /* storage offset */
  TORCH_CHECK(storage_offset >= 0, "Tensor: invalid storage offset ", storage_offset);
  self_->set_sizes_and_strides(size, stride, c10::make_optional(storage_offset));
}

}}