#pragma once
#include <ATen/core/Tensor.h>
#include <ATen/native/IndexingUtils.h>
#include <ATen/native/TensorIterator.h>
namespace at {
namespace native {
namespace {
static std::string shapes_as_str(TensorList tensors) {
std::ostringstream os;
bool first = true;
for (auto& tensor : tensors) {
if (tensor.defined()) {
if (!first) {
os << ", ";
}
os << tensor.sizes();
first = false;
}
}
return os.str();
}
} // anonymous namespace
static std::tuple<bool, Tensor> canDispatchToMaskedFill(const Tensor& self, const torch::List<c10::optional<at::Tensor>>& indices,
const Tensor& value){
if (!(value.numel() ==1 && value.device().is_cpu())){
return std::make_tuple(false,Tensor());
}
int64_t num_ind = 0;
Tensor mask;
auto self_device = self.device();
for (const c10::optional<Tensor> i: indices) {
if (!i.has_value() || !(*i).defined()){
num_ind++;
} else {
Tensor index = std::move(*i);
if ((index.scalar_type() != kByte && index.scalar_type() != kBool) ||
index.device() != self_device || mask.defined()){
return std::make_tuple(false, Tensor());
} else {
mask = index;
for (const auto j : c10::irange(index.dim())) {
int64_t srcIdx = num_ind + j;
TORCH_CHECK_INDEX(index.size(j) == self.size(srcIdx), "The shape of the mask ", index.sizes(), " at index ", j,
" does not match the shape of the indexed tensor ", self.sizes(), " at index ", srcIdx);
}
num_ind += mask.ndimension();
}
}
}
for (const auto i : c10::irange(num_ind, self.ndimension())) {
(void)i; //Suppress unused variable warning
mask = mask.unsqueeze(-1);
}
return std::make_tuple(true, mask);
}
static AdvancedIndex make_info(Tensor self, IOptTensorListRef orig) {
checkIndexTensorTypes(orig, /*allow_int*/ true);
// first expand BoolTensor (masks) or ByteTensor (masks) into 1 or more LongTensors
auto indices = expandTensors(self, orig);
// next broadcast all index tensors together
try {
indices = expand_outplace(indices);
} catch (std::exception& e) {
TORCH_CHECK_INDEX(false, "shape mismatch: indexing tensors could not be broadcast together"
" with shapes ", shapes_as_str(indices));
}
// add missing null Tensors so that it matches self.dim()
while (indices.size() < (size_t)self.dim()) {
indices.emplace_back();
}
// if the non-null indices are not all adjacent, transpose self and indices
// together so that they're adjacent at the front
if (!hasContiguousSubspace(indices)) {
std::tie(self, indices) = transposeToFront(self, indices);
}
// Ensure indices are on the same device as self
for (auto & indice : indices) {
if (indice.defined() && indice.device() != self.device()) {
indice = indice.to(self.device());
}
}
for (auto & indice : indices) {
if (indice.defined() && indice.dtype() == at::kInt) {
indice = indice.to(at::kLong);
}
}
return AdvancedIndex(self, indices);
}
} // at
} // native