#pragma once
#include <ATen/detail/FunctionTraits.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/TensorIteratorDynamicCasting.h>
#include <ATen/cuda/detail/OffsetCalculator.cuh>
#include <ATen/OpMathType.h>
#include <ATen/native/cuda/thread_constants.h>
#include <thrust/tuple.h>
#include <ATen/native/cuda/MemoryAccess.cuh>
namespace at { namespace native {
template<int N>
static OffsetCalculator<N> make_input_offset_calculator(const TensorIteratorBase& iter) {
// array size can not be 0, this happens when N == 0
constexpr int array_size = std::max<int>(N, 1);
TORCH_INTERNAL_ASSERT(N == iter.ntensors() - iter.noutputs());
std::array<const int64_t*, array_size> strides;
int64_t element_sizes[array_size];
for (int i = 0; i < N; i++) {
strides[i] = iter.strides(i + iter.noutputs()).data();
element_sizes[i] = iter.element_size(i + iter.noutputs());
}
return OffsetCalculator<N>(iter.ndim(), iter.shape().data(), strides.data(), element_sizes);
}
template <int num_outputs = 1>
static OffsetCalculator<num_outputs> make_output_offset_calculator(const TensorIteratorBase& iter) {
TORCH_INTERNAL_ASSERT(num_outputs == iter.noutputs());
std::array<const int64_t*, num_outputs> strides;
int64_t element_sizes[num_outputs];
for (int i = 0; i < num_outputs; i++) {
strides[i] = iter.strides(i).data();
element_sizes[i] = iter.element_size(i);
}
return OffsetCalculator<num_outputs>(iter.ndim(), iter.shape().data(), strides.data(), element_sizes);
}
template<typename func_t, typename policy_t>
__device__ inline void elementwise_kernel_helper(func_t f, policy_t policy) {
using traits = function_traits<func_t>;
using return_t = typename traits::result_type;
using args_t = typename traits::ArgsTuple;
int idx = blockIdx.x;
return_t results[thread_work_size()];
args_t args[thread_work_size()];
// load
policy.load(args, idx);
// compute
#pragma unroll
for (int i = 0; i < thread_work_size(); i++) {
if (policy.check_inbounds(i)) {
results[i] = c10::guts::apply(f, args[i]);
}
}
// store
policy.store(results, idx);
}
}} // namespace at::native
// Note:
// CUDA and ROCm get diverged in this PR:
// https://github.com/pytorch/pytorch/pull/32383
// Because for some reason trying to enable vectorized
// memory access introduce regression on ROCm.
#if !defined(USE_ROCM)
#include <ATen/native/cuda/CUDALoops.cuh>
#else
#include <ATen/native/cuda/ROCmLoops.cuh>
#endif
namespace at { namespace native {
template <typename func_t>
void gpu_kernel(TensorIteratorBase& iter, const func_t& f) {
for (int arg = 0; arg < iter.ntensors(); arg++) {
TORCH_INTERNAL_ASSERT(
iter.device(arg).is_cuda(),
"argument ", arg, ": expected a CUDA device but found ", iter.device(arg));
}
if (iter.numel() == 0) {
return;
}
if (!iter.can_use_32bit_indexing()) {
for (auto& sub_iter : iter.with_32bit_indexing()) {
gpu_kernel(sub_iter, f);
}
return;
}
gpu_kernel_impl(iter, f);
}
template<typename arg1_t, typename arg2_t, typename return_t, typename func_t>
struct AUnaryFunctor {
using traits = function_traits<func_t>;
using opmath_arg1_t = typename traits::template arg<0>::type;
__device__ return_t operator()(arg2_t b) const {
return f(a, b);
}
// NB: scalar is stored in higher precision!
AUnaryFunctor(func_t f_, opmath_arg1_t a_): f(f_), a(a_) {}
private:
func_t f;
opmath_arg1_t a;
};
template<typename arg1_t, typename arg2_t, typename return_t, typename func_t>
struct BUnaryFunctor {
using traits = function_traits<func_t>;
using opmath_arg2_t = typename traits::template arg<1>::type;
__device__ return_t operator()(arg1_t a) const {
return f(a, b);
}
// NB: scalar is stored in higher precision!
BUnaryFunctor(func_t f_, opmath_arg2_t b_): f(f_), b(b_) {}
private:
func_t f;
opmath_arg2_t b;
};
// Though seemingly noop, this inserts casts from arg1_t to func_t's type
// (which may be higher precision), as well as casts to return_t
template <typename arg1_t, typename arg2_t, typename return_t, typename func_t>
struct BinaryFunctor {
__device__ return_t operator()(arg1_t a, arg2_t b) const {
return f(a, b);
}
BinaryFunctor(func_t f_): f(f_) {}
private:
func_t f;
};
// Unlike gpu_kernel_with_scalars, this allows you to pass a func_t which
// accepts inputs at higher precision (typically opmath_t), but then
// ensure that we load from memory at the correct precision (scalar_t)
// to avoid expensive loads. For the whole sordid story see
// https://dev-discuss.pytorch.org/t/cuda-loops-case-study-code-generation-vs-templates/302
template <typename arg1_t, typename arg2_t = arg1_t, typename return_t = arg1_t, typename func_t>
void opmath_gpu_kernel_with_scalars(TensorIteratorBase& iter, const func_t& f) {
TORCH_INTERNAL_ASSERT(iter.ntensors() == 3);
using traits = function_traits<func_t>;
using opmath_arg1_t = typename traits::template arg<0>::type;
using opmath_arg2_t = typename traits::template arg<1>::type;
static_assert(
traits::arity == 2,
"gpu_kernel_with_scalars only supports two input arguments");
if (iter.is_cpu_scalar(1)) {
AUnaryFunctor<arg1_t, arg2_t, return_t, func_t> af(f, iter.scalar_value<opmath_arg1_t>(1));
iter.remove_operand(1);
// TODO: When all kernels that use gpu_kernel_with_scalars are
// ported to structured, this device guard can be deleted. This
// works around incorrect device guard generation for pre-structured
// kernels device guards, but structured kernels do it right and
// we can assume the device is already set correctly
const OptionalDeviceGuard device_guard(iter.device(1));
gpu_kernel(iter, af);
} else if (iter.is_cpu_scalar(2)) {
BUnaryFunctor<arg1_t, arg2_t, return_t, func_t> bf(f, iter.scalar_value<opmath_arg2_t>(2));
iter.remove_operand(2);
gpu_kernel(iter, bf);
} else {
gpu_kernel(iter, BinaryFunctor<arg1_t, arg2_t, return_t, func_t>(f));
}
}
template <typename scalar_t, typename return_t = scalar_t, typename func_t>
void opmath_symmetric_gpu_kernel_with_scalars(TensorIteratorBase& iter, const func_t& f) {
// Use symmetric property of the functor to reduce number of kernels,
// requires f(a, b) == f(b, a)
TORCH_INTERNAL_ASSERT(iter.ntensors() == 3);
using traits = function_traits<func_t>;
using opmath_arg_t = typename traits::template arg<0>::type;
static_assert(
traits::arity == 2,
"gpu_kernel_with_scalars only supports two input arguments");
static_assert(std::is_same<opmath_arg_t, typename traits::template arg<1>::type>::value,
"f is not symmetric");
OptionalDeviceGuard device_guard;
opmath_arg_t scalar_val{};
if (iter.is_cpu_scalar(1)) {
scalar_val = iter.scalar_value<opmath_arg_t>(1);
iter.remove_operand(1);
// TODO: When all kernels that use gpu_kernel_with_scalars are
// ported to structured, this device guard can be deleted. This
// works around incorrect device guard generation for pre-structured
// kernels device guards, but structured kernels do it right and
// we can assume the device is already set correctly
device_guard.reset_device(iter.device(1));
} else if (iter.is_cpu_scalar(2)) {
scalar_val = iter.scalar_value<opmath_arg_t>(2);
iter.remove_operand(2);
}
if (iter.ninputs() == 2) {
gpu_kernel(iter, BinaryFunctor<scalar_t, scalar_t, return_t, func_t>(f));
} else {
AUnaryFunctor<scalar_t, scalar_t, return_t, func_t> unary_f(f, scalar_val);
gpu_kernel(iter, unary_f);
}
}
// Legacy variant that assumes that func_t has the correct types
// that we expect to load from memory
template <typename func_t>
void gpu_kernel_with_scalars(TensorIteratorBase& iter, const func_t& f) {
using traits = function_traits<func_t>;
static_assert(
traits::arity == 2,
"gpu_kernel_with_scalars only supports two input arguments");
using arg1_t = typename traits::template arg<0>::type;
using arg2_t = typename traits::template arg<1>::type;
using return_t = typename traits::result_type;
opmath_gpu_kernel_with_scalars<arg1_t, arg2_t, return_t, func_t>(iter, f);
}
namespace { // functions for `gpu_kernel_multiple_outputs`.
// check the return type is `thrust::tuple`, not `std::tuple`.
template <typename T> struct is_tuple: std::false_type {};
template <typename ...T> struct is_tuple<thrust::tuple<T...>>: std::true_type {};
template <int num_outputs, typename func_t, typename array_t, typename inp_calc_t, typename out_calc_t>
C10_LAUNCH_BOUNDS_1(num_threads())
__global__ void unrolled_elementwise_kernel_for_multi_outputs(int N, func_t f, array_t data, inp_calc_t ic, out_calc_t oc) {
int remaining = N - block_work_size() * blockIdx.x;
elementwise_kernel_helper(f, memory::policies::multi_outputs_unroll<array_t, inp_calc_t, out_calc_t, num_outputs>(data, remaining, ic, oc));
}
template <int num_outputs, typename func_t, typename array_t, typename inp_calc_t, typename out_calc_t>
static inline void launch_unrolled_kernel_for_multi_outputs(int64_t N, const func_t& f, array_t data, inp_calc_t ic, out_calc_t oc) {
TORCH_INTERNAL_ASSERT(N > 0 && N <= std::numeric_limits<int32_t>::max());
int64_t grid = (N + block_work_size() - 1) / block_work_size();
auto stream = at::cuda::getCurrentCUDAStream();
unrolled_elementwise_kernel_for_multi_outputs<num_outputs, func_t, array_t><<<grid, num_threads(), 0, stream>>>(N, f, data, ic, oc);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
template <typename func_t>
void gpu_kernel_multiple_outputs_impl(TensorIteratorBase& iter, const func_t& f) {
using traits = function_traits<func_t>;
using output_t = typename traits::result_type;
static_assert(is_tuple<output_t>::value, "f's return type must be `thrust::tuple`");
constexpr int num_outputs = thrust::tuple_size<output_t>::value;
constexpr int num_inputs = traits::arity;
constexpr int ntensors = num_outputs + num_inputs;
TORCH_INTERNAL_ASSERT(iter.can_use_32bit_indexing());
TORCH_INTERNAL_ASSERT(iter.ntensors() == ntensors);
at::detail::Array<char*, ntensors> data;
for (int i = 0; i < ntensors; i++) {
data[i] = (char*)iter.data_ptr(i);
}
int64_t numel = iter.numel();
if (iter.is_contiguous()) {
auto input_calc = TrivialOffsetCalculator<num_inputs>();
auto output_calc = TrivialOffsetCalculator<num_outputs>();
launch_unrolled_kernel_for_multi_outputs<num_outputs>(numel, f, data, input_calc, output_calc);
} else {
auto input_calc = make_input_offset_calculator<num_inputs>(iter);
auto output_calc = make_output_offset_calculator<num_outputs>(iter);
launch_unrolled_kernel_for_multi_outputs<num_outputs>(numel, f, data, input_calc, output_calc);
}
}
} // namespace
template <typename func_t>
void gpu_kernel_multiple_outputs(TensorIteratorBase& iter, const func_t& f) {
ASSERT_HOST_DEVICE_LAMBDA(func_t);
for (int arg = 0; arg < iter.ntensors(); arg++) {
TORCH_INTERNAL_ASSERT(iter.device(arg).is_cuda());
}
if (iter.numel() == 0) {
return;
}
if (!iter.can_use_32bit_indexing()) {
for (auto& sub_iter : iter.with_32bit_indexing()) {
gpu_kernel_multiple_outputs(sub_iter, f);
}
return;
}
gpu_kernel_multiple_outputs_impl(iter, f);
}
}} //namespace at::native