#pragma once
#include <ATen/core/Tensor.h>
#include <ATen/cuda/CUDAContext.h>
#include <c10/cuda/CUDAGuard.h>
#include <ATen/native/cuda/Loops.cuh>
#include <ATen/native/cuda/MemoryAccess.cuh>
namespace at { namespace native {
namespace {
static constexpr int64_t kILP = 4;
static constexpr int64_t kChunkSize = 65536;
static constexpr int64_t kBlockSize = 512;
template<typename T>
__device__ __forceinline__ bool is_aligned(T* p){
return ((uint64_t)p) % (kILP * sizeof(T)) == 0;
}
template<typename T>
__device__ __forceinline__ void load_store(T* dst, T* src, int dst_offset, int src_offset){
using LT = at::native::memory::aligned_vector<T, kILP>;
((LT*)dst)[dst_offset] = ((LT*)src)[src_offset];
}
// TODO(crcrpar): Add `n>5` for `low prec params & their higher prec copy`
// TensorListMetadata has to be < 4KB - the limit for kernel launch argument
static constexpr int depth_to_max_tensors[5] = {110, 64, 48, 36, 30};
static constexpr int depth_to_max_blocks[5] = {320, 320, 320, 320, 320};
static constexpr int depth_to_max_tensors_scalarlist[5] = {96, 64, 48, 36, 30};
template<int n> struct TensorListMetadata
{
void* addresses[n][depth_to_max_tensors[n-1]];
int numel_for_tensor[depth_to_max_tensors[n-1]];
unsigned char block_to_tensor[depth_to_max_blocks[n-1]];
int block_to_chunk[depth_to_max_blocks[n-1]];
int start_tensor_this_launch;
};
// NOTE(crcrpar): This is a conservative resolution to handle `state_steps`
// whose each element is `at::Tensor` of 1 element representing the number of `step`s called so far.
template<int n> struct FusedOptimizerTensorListMetadata
{
void* addresses[n][depth_to_max_tensors[n-1]];
int numel_for_tensor[depth_to_max_tensors[n-1]];
void* state_steps_addresses[depth_to_max_tensors_scalarlist[n-1]];
unsigned char block_to_tensor[depth_to_max_blocks[n-1]];
int block_to_chunk[depth_to_max_blocks[n-1]];
int start_tensor_this_launch;
};
template<typename scalar_vals_t, int n> struct TensorListScalarListMetadata
{
void* addresses[n][depth_to_max_tensors_scalarlist[n-1]];
int numel_for_tensor[depth_to_max_tensors_scalarlist[n-1]];
scalar_vals_t scalar_vals[depth_to_max_tensors_scalarlist[n-1]];
unsigned char block_to_tensor[depth_to_max_blocks[n-1]];
int block_to_chunk[depth_to_max_blocks[n-1]];
};
// note(mkozuki): `n` of 96 and `scalar_vals_t` of `c10::complex<double>`
// violates the cuda kernel argument size limitation of 4kb.
// 80 is a number that does not violate this limitation.
template<> struct TensorListScalarListMetadata<c10::complex<double>, 1>
{
void* addresses[1][80];
int numel_for_tensor[80];
c10::complex<double> scalar_vals[80];
unsigned char block_to_tensor[depth_to_max_blocks[1-1]];
int block_to_chunk[depth_to_max_blocks[1-1]];
};
template<typename T, typename U, typename... ArgTypes>
C10_LAUNCH_BOUNDS_1(kBlockSize)
__global__ void
multi_tensor_apply_kernel(
T tensorListMeta,
U callable,
ArgTypes... args) {
// Hand the chunk information to the user-supplied functor to process however it likes.
callable(kChunkSize, tensorListMeta, args...);
}
template<int depth, typename scalar_T, typename T, typename... ArgTypes>
void multi_tensor_apply(
std::vector<std::vector<at::Tensor>>& tensor_lists,
at::ArrayRef<Scalar> scalars,
T callable,
ArgTypes... args) {
TORCH_CHECK(tensor_lists.size() == depth, "Number of tensor lists has to match the depth.");
size_t n_tensors = tensor_lists[0].size();
using scalar_vals_t = typename T::opmath_t;
TensorListScalarListMetadata<scalar_vals_t, depth> tensorListMeta;
int loc_block_info = 0;
int loc_tensor_info = 0;
for(size_t t = 0; t < n_tensors; t++) {
tensorListMeta.scalar_vals[loc_tensor_info] = scalars[t].to<scalar_T>();
tensorListMeta.numel_for_tensor[loc_tensor_info] = tensor_lists[0][t].numel();
for (int d = 0; d < depth; d++) {
tensorListMeta.addresses[d][loc_tensor_info] = tensor_lists[d][t].data_ptr();
}
loc_tensor_info++;
int chunks = (tensor_lists[0][t].numel() + kChunkSize - 1)/kChunkSize;
for (int chunk = 0; chunk < chunks; chunk++) {
tensorListMeta.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
tensorListMeta.block_to_chunk[loc_block_info] = chunk;
loc_block_info++;
bool tensors_full = (loc_tensor_info == depth_to_max_tensors_scalarlist[depth-1] &&
chunk == chunks - 1);
bool blocks_full = (loc_block_info == depth_to_max_blocks[depth-1]);
bool last_chunk = (t == n_tensors - 1 && chunk == chunks - 1);
if (tensors_full || blocks_full || last_chunk) {
multi_tensor_apply_kernel<<<loc_block_info, kBlockSize, 0, at::cuda::getCurrentCUDAStream()>>>(
tensorListMeta,
callable,
args...);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Reset.
loc_block_info = 0;
if(chunk == chunks - 1) {
loc_tensor_info = 0;
}
else {
tensorListMeta.numel_for_tensor[0] = tensorListMeta.numel_for_tensor[loc_tensor_info-1];
tensorListMeta.scalar_vals[0] = tensorListMeta.scalar_vals[loc_tensor_info-1];
for(int d = 0; d < depth; d++) {
tensorListMeta.addresses[d][0] = tensorListMeta.addresses[d][loc_tensor_info-1];
}
loc_tensor_info = 1;
}
}
}
}
}
template<int depth, typename T, typename... ArgTypes>
void multi_tensor_apply(
std::vector<std::vector<at::Tensor>>& tensor_lists,
T callable,
ArgTypes... args) {
TORCH_CHECK(tensor_lists.size() == depth, "Number of tensor lists has to match the depth.");
size_t n_tensors = tensor_lists[0].size();
TensorListMetadata<depth> tensorListMeta;
tensorListMeta.start_tensor_this_launch = 0;
int loc_block_info = 0;
int loc_tensor_info = 0;
for(size_t t = 0; t < n_tensors; t++) {
tensorListMeta.numel_for_tensor[loc_tensor_info] = tensor_lists[0][t].numel();
for (int d = 0; d < depth; d++) {
tensorListMeta.addresses[d][loc_tensor_info] = tensor_lists[d][t].data_ptr();
}
loc_tensor_info++;
int chunks = (tensor_lists[0][t].numel() + kChunkSize - 1)/kChunkSize;
for (int chunk = 0; chunk < chunks; chunk++) {
tensorListMeta.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
tensorListMeta.block_to_chunk[loc_block_info] = chunk;
loc_block_info++;
bool tensors_full = (loc_tensor_info == depth_to_max_tensors[depth-1] &&
chunk == chunks - 1);
bool blocks_full = (loc_block_info == depth_to_max_blocks[depth-1]);
bool last_chunk = (t == n_tensors - 1 && chunk == chunks - 1);
if (tensors_full || blocks_full || last_chunk) {
multi_tensor_apply_kernel<<<loc_block_info, kBlockSize, 0, at::cuda::getCurrentCUDAStream()>>>(
tensorListMeta,
callable,
args...);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Reset.
loc_block_info = 0;
if(chunk == chunks - 1) {
loc_tensor_info = 0;
tensorListMeta.start_tensor_this_launch = t + 1;
}
else {
tensorListMeta.numel_for_tensor[0] = tensorListMeta.numel_for_tensor[loc_tensor_info-1];
for(int d = 0; d < depth; d++) {
tensorListMeta.addresses[d][0] = tensorListMeta.addresses[d][loc_tensor_info-1];
}
loc_tensor_info = 1;
tensorListMeta.start_tensor_this_launch = t;
}
}
}
}
}
template<int depth, typename T, typename... ArgTypes>
void multi_tensor_apply_for_fused_optimizer(
std::vector<std::vector<at::Tensor>>& tensor_lists,
at::TensorList state_steps,
T callable,
ArgTypes... args) {
TORCH_CHECK(tensor_lists.size() == depth, "Number of tensor lists has to match the depth");
const auto num_tensors = tensor_lists[0].size();
FusedOptimizerTensorListMetadata<depth> tensorListMeta;
int loc_block_info = 0;
int loc_tensor_info = 0;
for (const auto & tensor_index : c10::irange(num_tensors)) {
tensorListMeta.state_steps_addresses[loc_tensor_info] = state_steps[tensor_index].data_ptr();
tensorListMeta.numel_for_tensor[loc_tensor_info] = tensor_lists[0][tensor_index].numel();
for (const auto & d : c10::irange(depth)) {
tensorListMeta.addresses[d][loc_tensor_info] = tensor_lists[d][tensor_index].data_ptr();
}
loc_tensor_info++;
const auto chunks = (tensor_lists[0][tensor_index].numel() + kChunkSize - 1) / kChunkSize;
for (const auto & chunk : c10::irange(chunks)) {
tensorListMeta.block_to_tensor[loc_block_info] = loc_tensor_info - 1;
tensorListMeta.block_to_chunk[loc_block_info] = chunk;
loc_block_info++;
const auto tensor_full = (loc_tensor_info == depth_to_max_tensors[depth - 1] && chunk == chunks - 1);
const auto blocks_full = loc_block_info == depth_to_max_blocks[depth - 1];
const auto last_chunk = (tensor_index == num_tensors - 1 && chunk == chunks - 1);
if (tensor_full || blocks_full || last_chunk) {
multi_tensor_apply_kernel<<<loc_block_info, kBlockSize, 0, at::cuda::getCurrentCUDAStream()>>>(
tensorListMeta,
callable,
args...);
C10_CUDA_KERNEL_LAUNCH_CHECK();
// Reset.
loc_block_info = 0;
if (chunk == chunks - 1) {
loc_tensor_info = 0;
} else {
tensorListMeta.numel_for_tensor[0] = tensorListMeta.numel_for_tensor[loc_tensor_info - 1];
tensorListMeta.state_steps_addresses[0] = tensorListMeta.state_steps_addresses[loc_tensor_info - 1];
for (const auto & d : c10::irange(depth)) {
tensorListMeta.addresses[d][0] = tensorListMeta.addresses[d][loc_tensor_info - 1];
}
loc_tensor_info = 1;
}
}
}
}
}
} // namespace
}} // at::native