#pragma once
#include <assert.h>
#include <ATen/core/Array.h>
#include <ATen/cuda/CUDAContext.h>
#include <ATen/cuda/DeviceUtils.cuh>
#include <ATen/cuda/detail/OffsetCalculator.cuh>
#include <ATen/detail/FunctionTraits.h>
#include <ATen/native/TensorIterator.h>
#include <ATen/native/cuda/thread_constants.h>
#include <ATen/native/cuda/MemoryAccess.cuh>
#include <ATen/OpMathType.h>
#include <c10/macros/Macros.h>
#include <c10/cuda/CUDACachingAllocator.h>
#include <functional>
#include <iosfwd>
#include <type_traits>
#include <utility>
#include <thrust/pair.h>
#include <ATen/native/cuda/jit_utils.h>
namespace at { namespace native {
using at::detail::Array;
static inline int64_t div_up(int64_t a, int64_t b) {
return (a + b - 1) / b;
}
// returns floor(log2(n))
static inline int last_pow2(int n) {
n |= (n >> 1);
n |= (n >> 2);
n |= (n >> 4);
n |= (n >> 8);
n |= (n >> 16);
return std::max(1, n - (n >> 1));
}
// returns reduced fraction numerator & denominator
C10_HOST_DEVICE static void reduce_fraction(size_t &numerator, size_t &denominator) {
// get GCD of num and denom using Euclid's algorithm.
// Can replace this with std::gcd if we ever support c++17.
size_t a = denominator;
size_t b = numerator;
while (b != 0) {
a %= b;
// swap(a,b)
size_t tmp = a;
a = b;
b = tmp;
}
// a is now the GCD
numerator /= a;
denominator /= a;
}
//template for changing MAX_NUM_THREADS based on op dtype
template <typename T>
struct mnt_wrapper {
static constexpr int MAX_NUM_THREADS = 512;
};
template <>
struct mnt_wrapper <c10::complex<double>>{
static constexpr int MAX_NUM_THREADS = 256;
};
constexpr int max_reduce_threads(c10::ScalarType type) {
return type == kComplexDouble ? 256 : 512;
}
struct ReduceConfig {
static constexpr int BLOCK_X = 0;
static constexpr int BLOCK_Y = 1;
static constexpr int CTA = 2;
static constexpr int input_vec_size = 4;
ReduceConfig(int element_size_bytes, int num_outputs, int num_inputs)
: element_size_bytes(element_size_bytes)
, num_inputs(num_inputs)
, num_outputs(num_outputs) {}
int element_size_bytes;
int num_inputs;
int num_outputs;
int step_input = 1;
int step_output = 1;
int ctas_per_output = 1;
int input_mult[3] = {0, 0, 0};
int output_mult[2] = {0, 0};
int block_width;
int block_height;
int num_threads;
bool vectorize_input = false;
int output_vec_size = 1;
template <typename T>
void set_block_dimension(int64_t dim0, int64_t dim1) {
const int max_num_threads = mnt_wrapper<T>::MAX_NUM_THREADS / output_vec_size;
int dim0_pow2 = dim0 < max_num_threads ? static_cast<int>(last_pow2(dim0)) : max_num_threads;
int dim1_pow2 = dim1 < max_num_threads ? static_cast<int>(last_pow2(dim1)) : max_num_threads;
block_width = std::min(dim0_pow2, int(at::cuda::warp_size()));
block_height = std::min(dim1_pow2, int(max_num_threads / block_width));
block_width = std::min(dim0_pow2, int(max_num_threads / block_height));
num_threads = block_width * block_height;
}
int split_input(int parallelism) {
int step = step_input;
step_input *= parallelism;
return step;
}
int split_output(int parallelism) {
int step = step_output;
step_output *= parallelism;
return step;
}
dim3 block() const {
return dim3(block_width, block_height);
}
dim3 grid() const {
return dim3(div_up(num_outputs / output_vec_size, step_output), ctas_per_output);
}
C10_HOST_DEVICE bool should_block_x_reduce() const {
return input_mult[BLOCK_X] != 0;
}
C10_HOST_DEVICE bool should_block_y_reduce() const {
return input_mult[BLOCK_Y] != 0;
}
C10_HOST_DEVICE bool should_global_reduce() const {
return input_mult[CTA] != 0;
}
C10_DEVICE bool should_store(int output_idx) const {
return output_idx < num_outputs &&
(!should_block_x_reduce() || threadIdx.x == 0) &&
(!should_block_y_reduce() || threadIdx.y == 0);
}
C10_DEVICE bool should_reduce_tail() const {
return (!should_block_y_reduce() || threadIdx.y == 0) &&
(!should_global_reduce() || blockIdx.y == 0);
}
C10_HOST_DEVICE int input_idx() const {
int lane = threadIdx.x;
int warp = threadIdx.y;
int cta2 = blockIdx.y;
return (lane * input_mult[BLOCK_X] +
warp * input_mult[BLOCK_Y] +
cta2 * input_mult[CTA]);
}
template <int output_vec_size>
C10_HOST_DEVICE int output_idx() const {
int lane = threadIdx.x;
int warp = threadIdx.y;
int cta1 = blockIdx.x;
return (lane * output_mult[BLOCK_X] +
warp * output_mult[BLOCK_Y] +
cta1 * step_output) * output_vec_size;
}
C10_DEVICE int shared_memory_offset(int offset) const {
return threadIdx.x + (threadIdx.y + offset) * blockDim.x;
}
C10_DEVICE int staging_memory_offset(int cta2) const {
int offset = cta2 + blockIdx.x * gridDim.y;
if (!should_block_x_reduce()) {
offset = threadIdx.x + offset * blockDim.x;
}
return offset;
}
int shared_memory_size() const {
if (!should_block_y_reduce() &&
(!should_block_x_reduce() ||
block_width <= at::cuda::warp_size())) {
return 0;
}
return element_size_bytes * num_threads * output_vec_size;
}
int64_t global_memory_size() const {
if (!should_global_reduce()) {
return 0;
}
auto size = (int64_t)element_size_bytes * num_outputs * ctas_per_output;
if (!should_block_x_reduce()) {
size *= block().x * output_vec_size;
}
return size;
}
int semaphore_size() const {
if (!should_global_reduce()) {
return 0;
}
return sizeof(int) * grid().x;
}
int values_per_thread() const {
return div_up(num_inputs, step_input);
}
};
std::ostream& operator<<(std::ostream& out, const ReduceConfig& config);
template<int nt, int output_vec_size, typename R>
C10_LAUNCH_BOUNDS_2(nt, 4)
__global__ void reduce_kernel(R reduction) {
reduction.template run<output_vec_size>();
}
template <typename index_t>
static OffsetCalculator<2, index_t> make_output_calculator(const TensorIterator& iter) {
int num_reduce_dims = iter.num_reduce_dims();
int num_output_dims = iter.ndim() - num_reduce_dims;
int input_index = iter.ntensors() - 1;
int output_index = 0;
std::array<const int64_t*, 2> strides = {
iter.strides(output_index).data() + num_reduce_dims,
iter.strides(input_index).data() + num_reduce_dims,
};
auto shape = iter.shape().data() + num_reduce_dims;
return OffsetCalculator<2, index_t>(num_output_dims, shape, strides.data());
}
template <typename index_t>
static OffsetCalculator<1, index_t> make_input_calculator(const TensorIterator& iter) {
int num_reduce_dims = iter.num_reduce_dims();
int input_index = iter.ntensors() - 1;
std::array<const int64_t*, 1> strides = {
iter.strides(input_index).data(),
};
return OffsetCalculator<1, index_t>(num_reduce_dims, iter.shape().data(), strides.data());
}
template <typename out_scalar_t, typename func_t>
struct func_wrapper_t {
using arg_t = typename binary_function_traits<func_t>::arg1_t;
using scalar_t = typename binary_function_traits<func_t>::arg2_t;
func_t combine;
static inline __device__ out_scalar_t project(arg_t arg) {
return (out_scalar_t) arg;
}
static inline __device__ arg_t warp_shfl_down(arg_t arg, int offset) {
return WARP_SHFL_DOWN(arg, offset);
}
static __device__ arg_t translate_idx(arg_t acc, int64_t /*idx*/) {
return acc;
}
func_wrapper_t(const func_t& op) : combine(op) {
}
// wrap a normal reduction that ignores the index
__device__ arg_t reduce(arg_t acc, scalar_t val, int64_t idx) const {
return combine(acc, val);
}
};
template <typename scalar_t, typename func_t>
func_wrapper_t<scalar_t, func_t> func_wrapper(const func_t& op) {
return func_wrapper_t<scalar_t, func_t> { op };
}
template <typename scalar_t, typename out_scalar_t=scalar_t>
struct ReduceJitOp {
//ReduceJitOp is almost like ReduceOp, but it doesn't have ops functor that specifies reduction operations
//Maybe we can find a way to unify ReduceOp and ReduceJitOp
using InputCalculator = OffsetCalculator<1, uint32_t>;
using OutputCalculator = OffsetCalculator<2, uint32_t>;
//TODO for now arg_t is always opmath_t of the input, later we'll need to change it
using arg_t = at::opmath_type<scalar_t>;
static constexpr int input_vec_size = ReduceConfig::input_vec_size;
//TODO - ReduceJitOp will probably need to be changed for reductions that need full functor,
//not just wrapper
arg_t ident;
ReduceConfig config;
InputCalculator input_calc;
OutputCalculator output_calc;
const void* src;
const char* dst[2]; //it accepts at most two destinations
// acc_buf used for accumulation among sub Tensor Iterator when accumulation on
// output is not permissible
void* acc_buf;
// cta_buf used for accumulation between blocks during global reduction
void* cta_buf;
int* semaphores;
int64_t base_idx;
bool accumulate;
bool final_output;
int noutputs;
ReduceJitOp(
ReduceConfig config,
InputCalculator input_calc,
OutputCalculator output_calc,
const void* src,
char* dst0,
optional<char*> dst1,
void* acc_buf,
void* cta_buf,
int* semaphores,
arg_t ident,
int noutputs,
int64_t base_idx)
: ident(ident),
config(config),
input_calc(input_calc),
output_calc(output_calc),
src(src),
acc_buf(acc_buf),
cta_buf(cta_buf),
semaphores(semaphores),
base_idx(base_idx),
noutputs(noutputs) {
dst[0] = dst0;
if (dst1.has_value()) {
dst[1] = dst1.value();
}
}
};
template <typename scalar_t, typename ops_t, typename index_t, typename out_scalar_t=scalar_t, int vt0=4>
struct ReduceOp {
using traits = function_traits<decltype(&ops_t::reduce)>;
using arg_t = typename std::decay<typename traits::template arg<0>::type>::type;
using InputCalculator = OffsetCalculator<1, index_t>;
using OutputCalculator = OffsetCalculator<2, index_t>;
static constexpr bool can_accumulate_in_output =
std::is_convertible<arg_t, out_scalar_t>::value
&& std::is_convertible<out_scalar_t, arg_t>::value;
static constexpr int input_vec_size = ReduceConfig::input_vec_size;
ops_t ops;
arg_t ident;
ReduceConfig config;
InputCalculator input_calc;
OutputCalculator output_calc;
const void* src;
const char* dst[2]; //it accepts at most two destinations
// acc_buf used for accumulation among sub Tensor Iterator when accumulation on
// output is not permissible
void* acc_buf;
// cta_buf used for accumulation between blocks during global reduction
void* cta_buf;
int* semaphores;
int64_t base_idx;
bool accumulate;
bool final_output;
int noutputs;
ReduceOp(
ops_t ops,
ReduceConfig config,
InputCalculator input_calc,
OutputCalculator output_calc,
const void* src,
char* dst0,
optional<char*> dst1,
void* acc_buf,
void* cta_buf,
int* semaphores,
arg_t ident,
int noutputs,
int64_t base_idx)
: ops(ops),
ident(ident),
config(config),
input_calc(input_calc),
output_calc(output_calc),
src(src),
acc_buf(acc_buf),
cta_buf(cta_buf),
semaphores(semaphores),
base_idx(base_idx),
noutputs(noutputs) {
dst[0] = dst0;
if (dst1.has_value()) {
dst[1] = dst1.value();
}
}
template <int output_vec_size>
C10_DEVICE void run() const {
extern __shared__ char shared_memory[];
index_t output_idx = config.output_idx<output_vec_size>();
index_t input_idx = config.input_idx();
auto base_offsets1 = output_calc.get(output_idx)[1];
using arg_vec_t = at::detail::Array<arg_t, output_vec_size>;
arg_vec_t value;
if (output_idx < config.num_outputs && input_idx < config.num_inputs) {
const scalar_t* input_slice = (const scalar_t*)((const char*)src + base_offsets1);
value = thread_reduce<output_vec_size>(input_slice);
}
if (config.should_block_y_reduce()) {
value = block_y_reduce<output_vec_size>(value, shared_memory);
}
if (config.should_block_x_reduce()) {
value = block_x_reduce<output_vec_size>(value, shared_memory);
}
using out_ptr_vec_t = at::detail::Array<out_scalar_t*, output_vec_size>;
using offset_vec_t = at::detail::Array<index_t, output_vec_size>;
offset_vec_t base_offsets;
out_ptr_vec_t out;
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
base_offsets[i] = output_calc.get(output_idx + i)[0];
out[i] = (out_scalar_t*)((char*)dst[0] + base_offsets[i]);
}
arg_vec_t* acc = nullptr;
if (acc_buf != nullptr) {
size_t numerator = sizeof(arg_t);
size_t denominator = sizeof(out_scalar_t);
reduce_fraction(numerator, denominator);
acc = (arg_vec_t*)((char*)acc_buf + (base_offsets[0] * numerator / denominator));
}
if (config.should_global_reduce()) {
value = global_reduce<output_vec_size>(value, acc, shared_memory);
} else if (config.should_store(output_idx)) {
if (accumulate) {
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
value[i] = ops.translate_idx(value[i], base_idx);
}
}
if (acc == nullptr) {
if (accumulate) {
value = accumulate_in_output<output_vec_size, can_accumulate_in_output>(out, value);
}
if (final_output) {
set_results_to_output<output_vec_size>(value, base_offsets);
} else {
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
*(out[i]) = get_accumulated_output<can_accumulate_in_output>(out[i], value[i]);
}
}
} else {
if (accumulate) {
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
value[i] = ops.combine((*acc)[i], value[i]);
}
}
if (final_output) {
set_results_to_output<output_vec_size>(value, base_offsets);
} else {
*acc = value;
}
}
}
}
template <int output_vec_size>
C10_DEVICE at::detail::Array<arg_t, output_vec_size> thread_reduce(const scalar_t* data) const {
if (config.vectorize_input) {
assert(output_vec_size == 1);
// reduce at the header of input_slice where memory is not aligned,
// so that thread_reduce will have an aligned memory to work on.
return {input_vectorized_thread_reduce_impl(data)};
} else {
index_t element_stride = input_calc.strides_[0][0] / sizeof(scalar_t);
bool is_contiguous = (input_calc.dims == 1 && element_stride == 1);
if (is_contiguous) {
return thread_reduce_impl<output_vec_size>(data, [](index_t idx) { return idx; });
} else if (input_calc.dims == 1) {
return thread_reduce_impl<output_vec_size>(data, [&](index_t idx) { return idx * element_stride; });
} else {
return thread_reduce_impl<output_vec_size>(data, [&](index_t idx) { return input_calc.get(idx)[0] / sizeof(scalar_t); });
}
}
}
C10_DEVICE arg_t input_vectorized_thread_reduce_impl(const scalar_t* data) const {
index_t end = config.num_inputs;
// Handle the head of input slice where data is not aligned
arg_t value = ident;
constexpr int align_bytes = alignof(at::native::memory::aligned_vector<scalar_t, input_vec_size>);
constexpr int align_elements = align_bytes / sizeof(scalar_t);
int shift = ((uint64_t)data) % align_bytes / sizeof(scalar_t);
if (shift > 0) {
data -= shift;
end += shift;
if(threadIdx.x >= shift && threadIdx.x < align_elements && config.should_reduce_tail()){
value = ops.reduce(value, c10::load(data + threadIdx.x), threadIdx.x - shift);
}
end -= align_elements;
data += align_elements;
shift = align_elements - shift;
}
// Do the vectorized reduction
using load_t = at::native::memory::aligned_vector<scalar_t, input_vec_size>;
index_t idx = config.input_idx();
const index_t stride = config.step_input;
// Multiple accumulators to remove dependency between unrolled loops.
arg_t value_list[input_vec_size];
value_list[0] = value;
#pragma unroll
for (int i = 1; i < input_vec_size; i++) {
value_list[i] = ident;
}
while (idx * input_vec_size + input_vec_size - 1 < end) {
const auto values_vec = memory::load_vector<input_vec_size>(data, idx);
#pragma unroll
for (index_t i = 0; i < input_vec_size; i++) {
value_list[i] = ops.reduce(value_list[i], values_vec.val[i], shift + idx * input_vec_size + i);
}
idx += stride;
}
// tail
index_t tail_start = end - end % input_vec_size;
if (config.should_reduce_tail()) {
int idx = tail_start + threadIdx.x;
if (idx < end) {
const auto value = c10::load(data + idx);
value_list[0] = ops.reduce(value_list[0], value, idx + shift);
}
}
// combine accumulators
#pragma unroll
for (int i = 1; i < input_vec_size; i++) {
value_list[0] = ops.combine(value_list[0], value_list[i]);
}
return value_list[0];
}
template <int output_vec_size, typename offset_calc_t>
C10_DEVICE at::detail::Array<arg_t, output_vec_size> thread_reduce_impl(const scalar_t* data_, offset_calc_t calc) const {
index_t idx = config.input_idx();
const index_t end = config.num_inputs;
const index_t stride = config.step_input;
using arg_vec_t = at::detail::Array<arg_t, output_vec_size>;
using load_t = at::native::memory::aligned_vector<scalar_t, output_vec_size>;
// Multiple accumulators to remove dependency between unrolled loops.
arg_vec_t value_list[vt0];
#pragma unroll
for (int i = 0; i < vt0; i++) {
#pragma unroll
for (int j = 0; j < output_vec_size; j++) {
value_list[i][j] = ident;
}
}
load_t values[vt0];
while (idx + (vt0 - 1) * stride < end) {
#pragma unroll
for (index_t i = 0; i < vt0; i++) {
const auto offset = calc(idx + i * stride) / output_vec_size;
values[i] = memory::load_vector<output_vec_size>(data_, offset);
}
#pragma unroll
for (index_t i = 0; i < vt0; i++) {
#pragma unroll
for (index_t j = 0; j < output_vec_size; j++) {
value_list[i][j] = ops.reduce(value_list[i][j], values[i].val[j], idx + i * stride);
}
}
idx += stride * vt0;
}
// tail
int idx_ = idx;
#pragma unroll
for (index_t i = 0; i < vt0; i++) {
if (idx >= end) {
break;
}
const auto offset = calc(idx) / output_vec_size;
values[i] = memory::load_vector<output_vec_size>(data_, offset);
idx += stride;
}
idx = idx_;
#pragma unroll
for (index_t i = 0; i < vt0; i++) {
if (idx >= end) {
break;
}
#pragma unroll
for (index_t j = 0; j < output_vec_size; j++) {
value_list[i][j] = ops.reduce(value_list[i][j], values[i].val[j], idx);
}
idx += stride;
}
// combine accumulators
#pragma unroll
for (int i = 1; i < vt0; i++) {
#pragma unroll
for (index_t j = 0; j < output_vec_size; j++) {
value_list[0][j] = ops.combine(value_list[0][j], value_list[i][j]);
}
}
return value_list[0];
}
template <int output_vec_size>
C10_DEVICE at::detail::Array<arg_t, output_vec_size> block_x_reduce(at::detail::Array<arg_t, output_vec_size> value, char* shared_memory) const {
using args_vec_t = at::detail::Array<arg_t, output_vec_size>;
int dim_x = blockDim.x;
args_vec_t* shared = (args_vec_t*)shared_memory;
if (dim_x > warpSize) {
int address_base = threadIdx.x + threadIdx.y*blockDim.x;
shared[address_base] = value;
for (int offset = dim_x/2; offset >= warpSize; offset >>= 1) {
__syncthreads();
if (threadIdx.x < offset && threadIdx.x + offset < blockDim.x) {
args_vec_t other = shared[address_base + offset];
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
value[i] = ops.combine(value[i], other[i]);
}
shared[address_base] = value;
}
}
dim_x = warpSize;
}
__syncthreads();
for (int offset = 1; offset < dim_x; offset <<= 1) {
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
arg_t other = ops.warp_shfl_down(value[i], offset);
value[i] = ops.combine(value[i], other);
}
}
return value;
}
template <int output_vec_size>
C10_DEVICE at::detail::Array<arg_t, output_vec_size> block_y_reduce(at::detail::Array<arg_t, output_vec_size> value, char* shared_memory) const {
using args_vec_t = at::detail::Array<arg_t, output_vec_size>;
args_vec_t* shared = (args_vec_t*)shared_memory;
shared[config.shared_memory_offset(0)] = value;
for (int offset = blockDim.y / 2; offset > 0; offset >>= 1) {
__syncthreads();
if (threadIdx.y < offset && threadIdx.y + offset < blockDim.y) {
args_vec_t other = shared[config.shared_memory_offset(offset)];
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
value[i] = ops.combine(value[i], other[i]);
}
shared[config.shared_memory_offset(0)] = value;
}
}
return value;
}
C10_DEVICE bool mark_block_finished() const {
__shared__ bool is_last_block_done_shared;
__syncthreads();
if (threadIdx.x == 0 && threadIdx.y == 0) {
int prev_blocks_finished = atomicAdd(&semaphores[blockIdx.x], 1);
is_last_block_done_shared = (prev_blocks_finished == gridDim.y - 1);
}
__syncthreads();
return is_last_block_done_shared;
}
template <int output_vec_size, bool can_acc>
C10_DEVICE at::detail::Array<arg_t, output_vec_size> accumulate_in_output(
at::detail::Array<out_scalar_t*, output_vec_size> out,
at::detail::Array<arg_t, output_vec_size> value,
typename std::enable_if<can_acc>::type* = nullptr
) const {
at::detail::Array<arg_t, output_vec_size> ret;
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
ret[i] = ops.combine(*(out[i]), value[i]);
}
return ret;
}
template <bool can_acc>
C10_DEVICE out_scalar_t get_accumulated_output(
out_scalar_t* out, arg_t value,
typename std::enable_if<can_acc>::type* = nullptr
) const {
assert(!final_output);
return (out_scalar_t)value;
}
// This function should never be called --
// it's the version of `accumulate_in_output`
// when accumulation in the output is not possible.
template <int output_vec_size, bool can_acc>
C10_DEVICE at::detail::Array<arg_t, output_vec_size> accumulate_in_output(
at::detail::Array<out_scalar_t*, output_vec_size>,
at::detail::Array<arg_t, output_vec_size>,
typename std::enable_if<!can_acc>::type* = nullptr
) const {
assert(false); // can't use AT_ASSERT in Cuda.
return arg_t {};
}
// This function should never be called --
// it's the version of `get_accumulated_output`
// when accumulation in the output is not possible.
template <bool can_acc>
C10_DEVICE out_scalar_t get_accumulated_output(
out_scalar_t* out, arg_t value,
typename std::enable_if<!can_acc>::type* = nullptr
) const {
assert(false);
return *out;
}
template<class T>
C10_DEVICE void set_results(const T x, const index_t base_offset) const {
assert(noutputs == 1);
auto res = (out_scalar_t*)((char*)dst[0] + base_offset);
*res = x;
}
//Currently implemented for max of two outputs
template<class T1, class T2>
C10_DEVICE void set_results(const thrust::pair<T1, T2> x, const index_t base_offset) const {
if (noutputs >= 1) {
auto res0 = (T1*)((char*)dst[0] + base_offset);
*res0 = x.first;
}
if (noutputs >= 2) {
// base offset is computed assuming element size being sizeof(T1), so we need to make a
// correction to obtain the correct base offset
auto res1 = (T2*) ((char *) dst[1] + base_offset / sizeof(T1) * sizeof(T2));
*res1 = x.second;
}
}
template <int output_vec_size>
C10_DEVICE void set_results_to_output(at::detail::Array<arg_t, output_vec_size> value, at::detail::Array<index_t, output_vec_size> base_offset) const {
assert(final_output);
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
set_results(ops.project(value[i]), base_offset[i]);
}
}
template <int output_vec_size>
C10_DEVICE at::detail::Array<arg_t, output_vec_size> global_reduce(at::detail::Array<arg_t, output_vec_size> value, at::detail::Array<arg_t, output_vec_size> *acc, char* shared_memory) const {
using arg_vec_t = at::detail::Array<arg_t, output_vec_size>;
using out_ptr_vec_t = at::detail::Array<out_scalar_t*, output_vec_size>;
using offset_vec_t = at::detail::Array<index_t, output_vec_size>;
arg_vec_t* reduce_buffer = (arg_vec_t*)cta_buf;
index_t output_idx = config.output_idx<output_vec_size>();
offset_vec_t base_offsets;
out_ptr_vec_t out;
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
base_offsets[i] = output_calc.get(output_idx + i)[0];
out[i] = (out_scalar_t*)((char*)dst[0] + base_offsets[i]);
}
bool should_store = config.should_store(output_idx);
if (should_store) {
index_t offset = config.staging_memory_offset(blockIdx.y);
reduce_buffer[offset] = value;
}
__threadfence(); // make sure writes are globally visible
__syncthreads(); // if multiple warps in this block wrote to staging, make sure they're all done
bool is_last_block_done = mark_block_finished();
if (is_last_block_done) {
value = ident;
if (config.should_block_x_reduce()) {
index_t input_offset = threadIdx.x + threadIdx.y * blockDim.x;
index_t step = blockDim.x * blockDim.y;
for (; input_offset < config.ctas_per_output; input_offset += step) {
index_t idx = config.staging_memory_offset(input_offset);
arg_vec_t next = reduce_buffer[idx];
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
value[i] = ops.combine(value[i], next[i]);
}
}
} else {
index_t input_offset = threadIdx.y;
index_t step = blockDim.y;
for (; input_offset < config.ctas_per_output; input_offset += step) {
index_t idx = config.staging_memory_offset(input_offset);
arg_vec_t next = reduce_buffer[idx];
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
value[i] = ops.combine(value[i], next[i]);
}
}
}
value = block_y_reduce(value, shared_memory);
if (config.should_block_x_reduce()) {
value = block_x_reduce<output_vec_size>(value, shared_memory);
}
if (should_store) {
if (accumulate) {
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
value[i] = ops.translate_idx(value[i], base_idx);
}
}
if (acc == nullptr) {
if (accumulate) {
value = accumulate_in_output<output_vec_size, can_accumulate_in_output>(out, value);
}
if (final_output) {
set_results_to_output<output_vec_size>(value, base_offsets);
} else {
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
*(out[i]) = get_accumulated_output<can_accumulate_in_output>(out[i], value[i]);
}
}
} else {
if (accumulate) {
#pragma unroll
for (int i = 0; i < output_vec_size; i++) {
value[i] = ops.combine((*acc)[i], value[i]);
}
}
if (final_output) {
set_results_to_output<output_vec_size>(value, base_offsets);
} else {
*acc = value;
}
}
}
}
return value;
}
};
template<int max_threads, typename R>
static void launch_reduce_kernel(const ReduceConfig& config, const R& reduction) {
dim3 block = config.block();
dim3 grid = config.grid();
auto stream = at::cuda::getCurrentCUDAStream();
int shared_memory = config.shared_memory_size();
switch(config.output_vec_size) {
case 4:
reduce_kernel<max_threads / 4, 4, R><<<grid, block, shared_memory, stream>>>(reduction);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
case 2:
reduce_kernel<max_threads / 2, 2, R><<<grid, block, shared_memory, stream>>>(reduction);
C10_CUDA_KERNEL_LAUNCH_CHECK();
break;
default:
reduce_kernel<max_threads / 1, 1, R><<<grid, block, shared_memory, stream>>>(reduction);
C10_CUDA_KERNEL_LAUNCH_CHECK();
}
}
inline void launch_jitted_reduce_kernel(
std::mutex &jiterator_mutex,
std::array<at::cuda::jit::NvrtcFunction, 3> &fn_cache,
const at::cuda::jit::KernelDescriptor &desc,
int vt0, const ReduceConfig& config, void *reduction) {
dim3 block = config.block();
dim3 grid = config.grid();
int shared_memory = config.shared_memory_size();
at::cuda::jit::NvrtcFunction* fn_ptr;
switch(config.output_vec_size) {
case 4:
fn_ptr = &fn_cache[0];
break;
case 2:
fn_ptr = &fn_cache[1];
break;
default:
fn_ptr = &fn_cache[2];
}
if (!fn_ptr->function) {
int max_threads_codegen =
max_reduce_threads(desc.f_inputs_type) / config.output_vec_size;
auto code = at::cuda::jit::generate_reduction_code(
desc, vt0, true, false, config.output_vec_size, max_threads_codegen);
*fn_ptr = at::cuda::jit::jit_pwise_function(code, "reduction_" + desc.name);
}
constexpr int kernel_args = 1;
void* args[kernel_args];
args[0] = reduction;
at::cuda::jit::launch_jitted_pwise_function(*fn_ptr, args, grid, block, shared_memory);
}
class AccumulationBuffer {
public:
AccumulationBuffer() {}
AccumulationBuffer(size_t acc_t_size, size_t out_t_size, char* out_ptr, int64_t size) {
out_ptr_ = (char*)out_ptr;
if (out_t_size >= acc_t_size) {
// reusing output buffer for accumulation.
acc_ptr_ = (char*)out_ptr;
numerator_ = 1;
denominator_ = 1;
} else {
auto& allocator = *c10::cuda::CUDACachingAllocator::get();
buffer_ = allocator.allocate(size);
acc_ptr_ = (char*)buffer_.get();
numerator_ = acc_t_size;
denominator_ = out_t_size;
reduce_fraction(numerator_, denominator_);
}
}
char* get_acc_slice(char* out_ptr) {
if (acc_ptr_ == nullptr) {
return nullptr;
}
return acc_ptr_ + ((out_ptr - out_ptr_) * numerator_ / denominator_);
}
private:
char* acc_ptr_ = nullptr;
char* out_ptr_ = nullptr;
size_t numerator_;
size_t denominator_;
at::DataPtr buffer_;
};
template <typename scalar_t>
int get_output_vec_size(const TensorIterator &iter) {
int vec_size = 4;
auto update_vec_size = [&vec_size](uint64_t n) {
while(n % vec_size != 0) {
vec_size /= 2;
}
};
uint64_t base_address = reinterpret_cast<uint64_t>(iter.data_ptr(iter.noutputs())) / sizeof(scalar_t);
update_vec_size(base_address);
const int output_index = iter.num_reduce_dims();
update_vec_size(iter.shape()[output_index]);
int j = 0;
for(auto i : iter.strides(iter.noutputs())) {
if (j != output_index) {
update_vec_size(i / sizeof(scalar_t));
}
j++;
}
return vec_size;
}
template<typename arg_t, typename scalar_t, int vt0>
ReduceConfig setReduceConfig(const TensorIterator& iter){
// Start by assuming that each thread handles a single output and all
// the inputs for that output.
int64_t num_outputs = iter.num_output_elements();
int64_t inputs_per_output = iter.numel() / num_outputs;
int input_index = iter.ntensors() - 1;
auto config = ReduceConfig(sizeof(arg_t), num_outputs, inputs_per_output);
int64_t dim0;
int64_t dim1;
int64_t fastest_moving_stride;
bool reduction_on_fastest_striding_dimension;
if (iter.ndim() > 0) {
// Adjust block size to map block width to fastest changing dimension of input
// tensor. This grants the best possible memory accessing pattern, given that
// for non-contiguous tensor with space in between, we cannot have perfect
// memory coalescing.
reduction_on_fastest_striding_dimension =
(iter.num_reduce_dims() == iter.ndim()) ||
(iter.strides(/*arg=*/input_index)[0] <
iter.strides(/*arg=*/input_index)[iter.num_reduce_dims()]);
// Notice that dim0 & dim1 does NOT guarantee any launch configuration here!
// dim0 & dim1 are more like the upper bound of the block dimension. The
// actual launch config and reduction scheme is determined by setting values
// to `config.input_mult` and `config.output_mult`.
// We try to max out dim1 so that we have enough threads per CTA to deliver
// performance for larger problem size.
if (reduction_on_fastest_striding_dimension) {
// Map block.x to the fastest reducing dimension. It implies:
// 1. block_x_reduce is required.
// 2. block.y now max out to num_outputs.
dim0 = inputs_per_output;
dim1 = num_outputs;
fastest_moving_stride = iter.strides(/*arg=*/input_index)[0];
} else {
// Map block.x to the fastest non reducing dimension. It implies:
// 1. block_x_reduce is turned off.
// 2. block.y now max out to inputs_per_output.
dim0 = num_outputs;
dim1 = inputs_per_output;
fastest_moving_stride = iter.strides(/*arg=*/input_index)[iter.num_reduce_dims()];
}
} else {
reduction_on_fastest_striding_dimension = true;
fastest_moving_stride = sizeof(scalar_t);
dim0 = 1;
dim1 = 1;
}
// We do vectorization to gain better memory access, there are two cases which we call
// "vectorize along input" and "vectorize along output". Note that the "input/output"
// here does not mean we are vectorizing load/store instructions. We always only vectorize
// load instructions.
//
// Case 1: "vectorize along input"
// This case happens when we are reducing along fastest moving dimesion. In such case, threads
// with the same threadIdx.y works on the same reduction cooperatively and will produce results
// for the same ouput. In such case, values in each loaded vector always correspond to the same ouput.
//
// Case 2: "vectorize along output"
// This case happens when the fastest moving dimesion is not the dimension of reduction. In such case,
// threads with different threadIdx.x are independent and will produce results for different outputs.
// In such case, values in each loaded vector always correspond to different outputs.
if (fastest_moving_stride == sizeof(scalar_t)) {
if (reduction_on_fastest_striding_dimension && dim0 > 128 && iter.num_reduce_dims() == 1 && vt0 >= ReduceConfig::input_vec_size) {
// Case 1: "vectorize along input"
// Note that if vt0 < ReduceConfig::vec_size, then this means the register pressure could be high, in such case,
// we should avoid vectorization.
config.vectorize_input = true;
dim0 /= config.input_vec_size;
} else if (!reduction_on_fastest_striding_dimension) {
// Case 2: "vectorize along output"
config.output_vec_size = get_output_vec_size<scalar_t>(iter);
dim0 /= config.output_vec_size;
}
}
// Adjust block_width and block_height
config.set_block_dimension<scalar_t>(dim0, dim1);
int block_width = config.block_width;
int block_height = config.block_height;
if (iter.ndim() == 0 || reduction_on_fastest_striding_dimension) {
// Split the input across lanes if the input is contiguous in the reduced
// dimension. This will require reduction between threads using warp
// shuffle instructions and shared memory (if block_width > warpSize).
config.input_mult[0] = config.split_input(block_width);
} else {
// Otherwise split the output across lanes in a warp.
config.output_mult[0] = config.split_output(block_width);
}
constexpr int min_values_per_thread = 16;
constexpr int max_values_per_thread = 256;
if (config.values_per_thread() >= block_height * 16 || config.values_per_thread() >= max_values_per_thread) {
// Divide the input across warps in a thread-block, if that leaves at least
// 16 elements to be summed by each thread. This will require inter-warp
// reduction using shared memory.
config.input_mult[1] = config.split_input(block_height);
} else {
// Otherwise, each warp handles a separate output.
config.output_mult[1] = config.split_output(block_height);
}
const int blocks_per_sm = at::cuda::getCurrentDeviceProperties()->maxThreadsPerMultiProcessor / config.num_threads;
const int num_mp = at::cuda::getCurrentDeviceProperties()->multiProcessorCount;
const int target_grid_size = num_mp * blocks_per_sm;
int grid = config.grid().x;
if (config.input_mult[1] != 0 && config.values_per_thread() >= max_values_per_thread && grid <= target_grid_size) {
// Divide the input across thread-blocks if the amount of work per-thread
// is large enough and the size of the output is small enough. This will
// require a reduction using global memory.
// If we decide to split input across blocks, as long as we can get enough
// number of blocks (`target_grid_size`) to balance SM, we should still
// make the number of values per thread large for best performance.
int ctas_per_output1 = div_up(target_grid_size, grid);
int ctas_per_output2 = div_up(config.values_per_thread(), min_values_per_thread);
int ctas_per_output3 = div_up(config.values_per_thread(), max_values_per_thread);
// We want the minimum of ctas_per_output1 and ctas_per_output2, so that each thread can have
// a large number of values to deal with. But we don't want values_per_thread to be larger than
// max_values_per_thread
config.ctas_per_output = std::max(std::min<int>(ctas_per_output1, ctas_per_output2), ctas_per_output3);
if (config.ctas_per_output > 1) {
config.input_mult[2] = config.split_input(config.ctas_per_output);
}
}
return config;
};
template <typename scalar_t, typename out_scalar_t, int vt0=4, typename ops_t, typename ident_t=double>
inline void gpu_reduce_kernel(TensorIterator& iter, const ops_t& ops, ident_t ident=0,
AccumulationBuffer* acc_buf_ptr=nullptr, int64_t base_idx=0) {
AT_ASSERT(iter.numel() > 0 && iter.ntensors() - iter.noutputs() == 1 && iter.noutputs() >= 1);
using traits = function_traits<decltype(&ops_t::reduce)>;
using arg_t = typename traits::template arg<0>::type;
// at::Half/at::ComplexHalf overflows easily as it's range is very small.
// So when scalar_t and out_scalar_t are at::Half/at::ComplexHalf, we
// set can_accumulate_in_output to False.
static constexpr bool is_inp_out_type_half_or_chalf =
(std::is_same<at::Half, scalar_t>::value &&
std::is_same<at::Half, out_scalar_t>::value) ||
(std::is_same<c10::complex<Half>, scalar_t>::value &&
std::is_same<c10::complex<Half>, out_scalar_t>::value);
// at::BFloat16 has lower precision and can lead to rounding errors.
// So when scalar_t and out_scalar_t are at::BFloat16, we
// set can_accumulate_in_output to False.
static constexpr bool is_inp_out_type_bfloat16 =
(std::is_same<at::BFloat16, scalar_t>::value &&
std::is_same<at::BFloat16, out_scalar_t>::value);
static constexpr bool can_accumulate_in_output =
std::is_convertible<arg_t, out_scalar_t>::value &&
!(is_inp_out_type_half_or_chalf || is_inp_out_type_bfloat16);
bool can_use_32bit_indexing = iter.can_use_32bit_indexing();
std::unique_ptr<AccumulationBuffer> owned_buf_ptr;
// The acc_buf_ptr is a shared pointer. It is create at the first entrance and
// reused by all recursive function calls.
if (acc_buf_ptr == NULL) {
// acc_buf_ptr holds buffer used for accumulation among multiple sub_iter
// when accumulation in output is not possible.
if (!can_accumulate_in_output && !can_use_32bit_indexing) {
int64_t output_memory_size = iter.element_size(0);
for (int dim = 0; dim < iter.ndim(); dim++) {
output_memory_size = std::max(output_memory_size, iter.shape()[dim] * iter.strides(0)[dim]);
}
output_memory_size /= iter.element_size(0); //iter.strides is in bytes
owned_buf_ptr.reset(new AccumulationBuffer(sizeof(arg_t),
sizeof(out_scalar_t),
(char*) iter.data_ptr(0),
output_memory_size * sizeof(arg_t)));
} else {
owned_buf_ptr.reset(new AccumulationBuffer());
}
acc_buf_ptr = owned_buf_ptr.get();
}
if (!can_use_32bit_indexing) {
for (auto& sub_iter : iter.with_32bit_indexing()) {
int64_t sub_iter_base_idx = sub_iter.view_offsets()[0];
gpu_reduce_kernel<scalar_t, out_scalar_t, vt0>(sub_iter, ops, ident,
acc_buf_ptr, sub_iter_base_idx);
}
return;
}
const char* in_data = (char*)iter.data_ptr(iter.ntensors() - 1);
char* out_data = (char*)iter.data_ptr(0);
const auto noutputs = iter.noutputs();
optional<char*> out_data_extra;
if (noutputs > 1) {
out_data_extra = (char*)iter.data_ptr(1);
} else {
out_data_extra = nullopt;
}
char* acc_data = acc_buf_ptr->get_acc_slice(out_data);
ReduceConfig config = setReduceConfig<arg_t, scalar_t, vt0>(iter);
at::DataPtr buffer;
at::DataPtr semaphores;
if (config.should_global_reduce()) {
auto& allocator = *c10::cuda::CUDACachingAllocator::get();
buffer = allocator.allocate(config.global_memory_size());
semaphores = allocator.allocate(config.semaphore_size());
auto stream = at::cuda::getCurrentCUDAStream();
AT_CUDA_CHECK(cudaMemsetAsync(semaphores.get(), 0, config.semaphore_size(), stream));
}
AT_ASSERT(can_use_32bit_indexing);
auto output_calc = make_output_calculator<uint32_t>(iter);
auto input_calc = make_input_calculator<uint32_t>(iter);
auto reduce = ReduceOp<scalar_t, ops_t, uint32_t, out_scalar_t, vt0>(
ops,
config,
input_calc,
output_calc,
in_data,
out_data,
out_data_extra,
acc_data,
buffer.get(),
(int*)semaphores.get(),
ident,
noutputs,
base_idx);
reduce.accumulate = iter.should_accumulate();
reduce.final_output = iter.is_final_output();
launch_reduce_kernel<mnt_wrapper<scalar_t>::MAX_NUM_THREADS>(config, reduce);
}
//TODO this is 100 lines of almost-copy-paste, because we have to have different template args for this function
//try unifying with gpu_reduce_kernel
template <char const* name, typename scalar_t, typename out_scalar_t, int vt0=4, typename ident_t=double>
inline void jitted_gpu_reduce_kernel(TensorIterator& iter, const std::string& func, ident_t ident=0,
AccumulationBuffer* acc_buf_ptr=nullptr, int64_t base_idx=0) {
AT_ASSERT(iter.numel() > 0 && iter.ntensors() - iter.noutputs() == 1 && iter.noutputs() >= 1);
//TODO - this will be different for more complicated reductions, but for now reductions using
//func_wrapper all have arg_t = opmath
using arg_t = at::opmath_type<scalar_t>;
// at::Half/at::ComplexHalf overflows easily as it's range is very small.
// So when scalar_t and out_scalar_t are at::Half/at::ComplexHalf, we
// set can_accumulate_in_output to False.
static constexpr bool is_inp_out_type_half_or_chalf =
(std::is_same<at::Half, scalar_t>::value &&
std::is_same<at::Half, out_scalar_t>::value) ||
(std::is_same<c10::complex<Half>, scalar_t>::value &&
std::is_same<c10::complex<Half>, out_scalar_t>::value);
// at::BFloat16 has lower precision and can lead to rounding errors.
// So when scalar_t and out_scalar_t are at::BFloat16, we
// set can_accumulate_in_output to False.
static constexpr bool is_inp_out_type_bfloat16 =
(std::is_same<at::BFloat16, scalar_t>::value &&
std::is_same<at::BFloat16, out_scalar_t>::value);
static constexpr bool can_accumulate_in_output =
std::is_convertible<arg_t, out_scalar_t>::value &&
!(is_inp_out_type_half_or_chalf || is_inp_out_type_bfloat16);
bool can_use_32bit_indexing = iter.can_use_32bit_indexing();
std::unique_ptr<AccumulationBuffer> owned_buf_ptr;
// The acc_buf_ptr is a shared pointer. It is create at the first entrance and
// reused by all recursive function calls.
if (acc_buf_ptr == NULL) {
// acc_buf_ptr holds buffer used for accumulation among multiple sub_iter
// when accumulation in output is not possible.
if (!can_accumulate_in_output && !can_use_32bit_indexing) {
int64_t output_memory_size = iter.element_size(0);
for (int dim = 0; dim < iter.ndim(); dim++) {
output_memory_size = std::max(output_memory_size, iter.shape()[dim] * iter.strides(0)[dim]);
}
output_memory_size /= iter.element_size(0); //iter.strides is in bytes
owned_buf_ptr.reset(new AccumulationBuffer(sizeof(out_scalar_t), //TODO
sizeof(out_scalar_t),
(char*) iter.data_ptr(0),
output_memory_size * sizeof(out_scalar_t))); //TODO
} else {
owned_buf_ptr.reset(new AccumulationBuffer());
}
acc_buf_ptr = owned_buf_ptr.get();
}
if (!can_use_32bit_indexing) {
for (auto& sub_iter : iter.with_32bit_indexing()) {
int64_t sub_iter_base_idx = sub_iter.view_offsets()[0];
jitted_gpu_reduce_kernel<name, scalar_t, out_scalar_t, vt0>(sub_iter, func, ident,
acc_buf_ptr, sub_iter_base_idx);
}
return;
}
//TODO - for now we support a single input, we may be able to relax this constraint
const char* in_data = (char*)iter.data_ptr(iter.ntensors() - 1);
char* out_data = (char*)iter.data_ptr(0);
const auto noutputs = iter.noutputs();
optional<char*> out_data_extra;
if (noutputs > 1) {
out_data_extra = (char*)iter.data_ptr(1);
} else {
out_data_extra = nullopt;
}
char* acc_data = acc_buf_ptr->get_acc_slice(out_data);
ReduceConfig config = setReduceConfig<arg_t, scalar_t, vt0>(iter);
at::DataPtr buffer;
at::DataPtr semaphores;
if (config.should_global_reduce()) {
auto& allocator = *c10::cuda::CUDACachingAllocator::get();
buffer = allocator.allocate(config.global_memory_size());
semaphores = allocator.allocate(config.semaphore_size());
auto stream = at::cuda::getCurrentCUDAStream();
AT_CUDA_CHECK(cudaMemsetAsync(semaphores.get(), 0, config.semaphore_size(), stream));
}
AT_ASSERT(can_use_32bit_indexing);
auto output_calc = make_output_calculator<uint32_t>(iter);
auto input_calc = make_input_calculator<uint32_t>(iter);
auto reduce = ReduceJitOp<scalar_t, out_scalar_t>(
config,
input_calc,
output_calc,
in_data,
out_data,
out_data_extra,
acc_data,
buffer.get(),
(int*)semaphores.get(),
ident,
noutputs,
base_idx);
reduce.accumulate = iter.should_accumulate();
reduce.final_output = iter.is_final_output();
constexpr int nInputs = 1;
constexpr int nOutputs = 1;
static auto desc = at::cuda::jit::make_kernel_descriptor<
out_scalar_t, scalar_t>(name, func, nInputs, nOutputs);
static std::mutex jiterator_mutex;
static std::vector<std::array<at::cuda::jit::NvrtcFunction, 3>> fn_cache(c10::cuda::device_count());
auto &cache = fn_cache[iter.device().index()];
launch_jitted_reduce_kernel(
jiterator_mutex, cache, desc, vt0, config, &reduce);
}
}} // namespace at::native