#pragma once
#ifdef USE_PYTORCH_QNNPACK
#include <ATen/core/Tensor.h>
#include <c10/util/irange.h>
#include <pytorch_qnnpack.h>
#include <qnnpack_func.h>
#include <ATen/native/quantized/cpu/XnnpackUtils.h>
#include <ATen/native/quantized/PackedParams.h>
#include <ATen/native/utils/Factory.h>
#ifndef AT_PER_OPERATOR_HEADERS
#include <ATen/Functions.h>
#else
#include <ATen/ops/empty.h>
#endif
#include <utility>
struct QnnpackOperatorDeleter {
void operator()(pytorch_qnnp_operator_t op) {
pytorch_qnnp_delete_operator(op);
}
};
// PackedWeight struct for QNNPACK stores the original Weight and Bias as
// QNNPACK currently does not support an unpack function.
// For PyTorch Mobile, once the model is scripted and serialized we don't need
// to call unpack, so we can save some memory by checking for this case and free
// the original weights after packing.
// Input scale is set to null in pre-pack step. QNNPACK needs bias quantized
// with input scale which is available at runtime in pytorch. During runtime if
// input scale value changes then we requantize bias with the updated scale. For
// inference we expect the graph to be static so the input scale should not
// change across consecutive inference calls.
struct PackedLinearWeightsQnnp : public LinearPackedParamsBase {
PackedLinearWeightsQnnp(
std::unique_ptr<qnnpack::PackBMatrix> w,
at::Tensor orig_weight,
at::Tensor bias,
c10::optional<double> input_scale,
at::Tensor w_scales,
std::vector<uint8_t>&& w_zps)
: w(std::move(w)),
orig_weight(std::move(orig_weight)),
bias_(at::native::mobile::allocate_padded_contiguous_if_needed(
bias, bias.suggest_memory_format())),
per_channel_(this->orig_weight.qscheme() == at::kPerChannelAffine),
input_scale(std::move(input_scale)),
w_scales(std::move(w_scales)),
w_zero_points(std::move(w_zps)) {
weight_sizes = this->orig_weight.sizes().vec();
n_elements = std::accumulate(std::begin(weight_sizes), std::end(weight_sizes), 1, std::multiplies<double>());
}
std::unique_ptr<qnnpack::PackBMatrix> w;
at::Tensor orig_weight;
at::Tensor bias_;
bool per_channel_;
c10::optional<double> input_scale;
at::Tensor w_scales;
std::vector<uint8_t> w_zero_points;
std::vector<float> requantization_scales;
std::vector<int64_t> weight_sizes;
int n_elements;
at::Tensor apply(
at::Tensor input,
double output_scale,
int64_t output_zero_point) override;
at::Tensor apply_relu(
at::Tensor input,
double output_scale,
int64_t output_zero_point) override;
at::Tensor apply_dynamic(at::Tensor input, bool reduce_range=false) override;
at::Tensor apply_dynamic_relu(at::Tensor input, bool reduce_range=false) override;
std::tuple<at::Tensor, c10::optional<at::Tensor>> unpack() override;
c10::optional<at::Tensor> bias() override {
return bias_;
}
static c10::intrusive_ptr<LinearPackedParamsBase> prepack(
at::Tensor weight,
c10::optional<at::Tensor> bias);
bool per_channel() const {
return per_channel_;
}
private:
std::mutex qnnp_mutex_;
#ifdef USE_XNNPACK
xnnpack_operator xnnp_linear_op;
template <typename scalar_t, bool kReluFused>
at::Tensor apply_impl_xnnp(
const at::Tensor& input,
double output_scale,
int64_t output_zero_point);
#endif // USE_XNNPACK
template <bool ReluFused>
at::Tensor apply_impl(
at::Tensor input,
double output_scale,
int64_t output_zero_point);
template <bool ReluFused>
at::Tensor apply_dynamic_impl(at::Tensor input, bool reduce_range);
};
template <int kSpatialDim = 2>
struct PackedConvWeightsQnnp : public ConvPackedParamsBase<kSpatialDim> {
PackedConvWeightsQnnp(
std::unique_ptr<qnnpack::PrePackConvWeights> w,
at::Tensor orig_weight,
at::Tensor bias,
torch::List<int64_t> stride,
torch::List<int64_t> padding,
torch::List<int64_t> output_padding,
torch::List<int64_t> dilation,
int64_t groups,
bool transpose,
c10::optional<double> input_scale,
std::vector<int64_t> kernel,
at::Tensor w_scale,
std::vector<uint8_t>&& w_zps,
bool is_per_channel)
: w(std::move(w)),
orig_weight(std::move(orig_weight)),
bias(std::move(bias)),
stride_(std::move(stride)),
padding_(std::move(padding)),
output_padding_(std::move(output_padding)),
dilation_(std::move(dilation)),
groups_(groups),
transpose_(transpose),
is_per_channel_(is_per_channel),
input_scale(input_scale),
kernel_(std::move(kernel)),
w_scales(std::move(w_scale)),
w_zero_points(std::move(w_zps)) {
const bool any_padding = std::any_of(
padding_.begin(), padding_.end(), [](const auto& e) { return e != 0; });
const size_t kernel_size =
std::accumulate(kernel_.begin(), kernel_.end(), 1, std::multiplies<>());
const size_t group_input_channels = transpose
? this->orig_weight.size(0) / groups
: this->orig_weight.size(1);
const size_t group_output_channels = transpose
? this->orig_weight.size(1)
: this->orig_weight.size(0) / groups;
const size_t kernel_depth = kSpatialDim == 3 ? kernel_[0] : 1;
const size_t kernel_height = kernel_[kSpatialDim - 2];
const size_t kernel_width = kernel_[kSpatialDim - 1];
pytorch_qnnp_ukernel_type ukernel_type;
if (transpose_) {
ukernel_type = pytorch_qnnp_ukernel_type_conv;
} else {
ukernel_type = pytorch_qnnp_ukernel_type_none;
const bool has_depthwise_dimensions =
(kSpatialDim == 2 &&
((kernel_height == 3 && kernel_width == 3) ||
(kernel_height == 5 && kernel_width == 5))) ||
(kSpatialDim == 3 && kernel_height == 3 && kernel_width == 3 &&
kernel_depth == 3);
const bool has_depthwise_grouping =
group_input_channels == 1 && group_output_channels == 1 && groups > 1;
if (has_depthwise_dimensions && has_depthwise_grouping) {
ukernel_type = pytorch_qnnp_ukernel_type_dwconv;
} else if (
kernel_size == 1 &&
std::all_of(
stride_.begin(),
stride_.end(),
[](const auto& e) { return e == 1; }) &&
!any_padding) {
ukernel_type = group_input_channels >= SIZE_MAX
? pytorch_qnnp_ukernel_type_xzp_gemm
: pytorch_qnnp_ukernel_type_gemm;
} else {
ukernel_type = pytorch_qnnp_ukernel_type_conv;
}
}
if (is_per_channel && ukernel_type == pytorch_qnnp_ukernel_type_xzp_gemm) {
TORCH_INTERNAL_ASSERT(
false, "Per channel quantized weights are not supported for XZP kernels");
}
pytorch_qnnp_operator_t convolution{nullptr};
// Initially all the params are set to zero.
convolution = static_cast<pytorch_qnnp_operator_t>(
calloc(1, sizeof(struct pytorch_qnnp_operator)));
if (convolution == nullptr) {
TORCH_INTERNAL_ASSERT(
false, "failed to allocate %zu bytes for pytorch_qnnp_operator structure",
sizeof(struct pytorch_qnnp_operator));
}
convolution_op =
std::unique_ptr<pytorch_qnnp_operator, QnnpackOperatorDeleter>(
convolution);
// NOLINTNEXTLINE(clang-analyzer-core.NullDereference)
convolution->ukernel_type = ukernel_type;
convolution->groups = groups;
convolution->group_input_channels = group_input_channels;
convolution->group_output_channels = group_output_channels;
convolution->kernel_depth = kernel_depth;
convolution->kernel_height = kernel_height;
convolution->kernel_width = kernel_width;
convolution->stride_depth = kSpatialDim == 3 ? stride_[0] : 1;
convolution->stride_height = stride_[kSpatialDim - 2];
convolution->stride_width = stride_[kSpatialDim - 1];
convolution->dilation_depth = kSpatialDim == 3 ? dilation_[0] : 1;
convolution->dilation_height = dilation_[kSpatialDim - 2];
convolution->dilation_width = dilation_[kSpatialDim - 1];
convolution->input_padding_height = padding_[kSpatialDim - 2];
convolution->input_padding_width = padding_[kSpatialDim - 1];
convolution->input_padding_depth = kSpatialDim == 3 ? padding_[0] : 0;
convolution->per_channel = is_per_channel_;
convolution->transpose = transpose_;
const uint32_t kr = pytorch_qnnp_params.q8conv.kr;
const size_t k_stride = (group_input_channels + (kr - 1)) & -kr;
size_t zero_size = sizeof(uint8_t) * k_stride;
size_t zero_offset = 0;
if (transpose_) {
convolution->adjustment_width = output_padding_[1];
convolution->adjustment_height = output_padding_[0];
if (group_input_channels < 8) {
zero_size += 8;
zero_offset = 8;
}
} else {
zero_buffer_size = 0;
if (any_padding) {
zero_size = 0;
zero_offset = 0;
if (ukernel_type == pytorch_qnnp_ukernel_type_dwconv) {
const uint32_t cr = pytorch_qnnp_params.q8dw9.cr;
const size_t group_stride = (groups + (cr - 1)) & -cr;
if (groups >= 8) {
zero_size = sizeof(uint8_t) * group_stride;
zero_offset = 0;
} else {
zero_size = sizeof(uint8_t) * group_stride + 8;
zero_offset = sizeof(uint8_t) * 8;
}
} else if (
ukernel_type == pytorch_qnnp_ukernel_type_conv ||
ukernel_type == pytorch_qnnp_ukernel_type_gemm) {
if (group_input_channels >= 8) {
zero_size = sizeof(uint8_t) * k_stride;
zero_offset = 0;
} else {
zero_size = sizeof(uint8_t) * k_stride + 8;
zero_offset = 8;
}
}
}
}
// NOLINTNEXTLINE(clang-analyzer-optin.portability.UnixAPI)
void* zero_buffer = malloc(zero_size);
if (zero_buffer == nullptr) {
pytorch_qnnp_delete_operator(convolution);
TORCH_INTERNAL_ASSERT(
false, "failed to allocate %zu bytes for zero padding",
zero_size);
}
// Need to set to input zero point
// memset(zero_buffer, input_zero_point, zero_size);
zero_buffer_size = zero_size;
convolution->zero_buffer = zero_buffer;
convolution->zero_pointer = (void*)((uintptr_t)zero_buffer + zero_offset);
}
std::unique_ptr<pytorch_qnnp_operator, QnnpackOperatorDeleter> convolution_op;
#ifdef USE_XNNPACK
xnnpack_operator xnnp_convolution_op;
#endif // USE_XNNPACK
std::unique_ptr<qnnpack::PrePackConvWeights> w;
at::Tensor orig_weight;
at::Tensor bias;
torch::List<int64_t> stride_;
torch::List<int64_t> padding_;
torch::List<int64_t> output_padding_;
torch::List<int64_t> dilation_;
int64_t groups_;
bool transpose_;
bool is_per_channel_;
c10::optional<double> input_scale;
std::vector<int64_t> kernel_;
at::Tensor w_scales;
std::vector<uint8_t> w_zero_points;
std::vector<float> requantization_scales;
size_t zero_buffer_size;
at::Tensor apply(
const at::Tensor& input,
double output_scale,
int64_t output_zero_point) override;
at::Tensor apply_relu(
const at::Tensor& input,
double output_scale,
int64_t output_zero_point) override;
at::Tensor apply_dynamic(
const at::Tensor& input,
bool reduce_range=false) override;
std::tuple<at::Tensor, c10::optional<at::Tensor>> unpack() override;
static c10::intrusive_ptr<ConvPackedParamsBase<kSpatialDim>> prepack(
at::Tensor weight,
c10::optional<at::Tensor> bias,
torch::List<int64_t> stride,
torch::List<int64_t> padding,
torch::List<int64_t> output_padding,
torch::List<int64_t> dilation,
int64_t groups,
bool transpose);
torch::List<int64_t> stride() const override {
return stride_;
}
torch::List<int64_t> padding() const override {
return padding_;
}
torch::List<int64_t> output_padding() const override {
return output_padding_;
}
torch::List<int64_t> dilation() const override {
return dilation_;
}
int64_t groups() const override {
return groups_;
}
bool transpose() const override {
return transpose_;
}
bool per_channel() const {
return is_per_channel_;
}
private:
std::mutex qnnp_mutex_;
template <bool ReluFused>
at::Tensor apply_impl(
const at::Tensor& input,
double output_scale,
int64_t output_zero_point);
#ifdef USE_XNNPACK
template <typename scalar_t, bool ReluFused>
at::Tensor apply_impl_xnnp(
const at::Tensor& input,
double output_scale,
int64_t output_zero_point);
#endif // USE_XNNPACK
};
enum class Activation : uint8_t { NONE = 0, RELU = 1 };
#if defined(__ANDROID__) && !defined(__NDK_MAJOR__)
template <class T>
inline float Round(const float x) {
return ::nearbyintf(x);
}
inline double Round(const double x) {
return ::nearbyint(x);
}
#else
template <class T>
inline T Round(const T x) {
return std::nearbyint(x);
}
#endif
template<typename T>
inline T QuantizeValue(float scale, int32_t zero_point, float value) {
const int32_t qmin = std::numeric_limits<T>::min();
const int32_t qmax = std::numeric_limits<T>::max();
auto r = zero_point + static_cast<int32_t>(Round(value / scale));
r = std::max(r, qmin);
r = std::min(r, qmax);
return static_cast<T>(r);
}
template<typename T>
inline std::pair<T, T> activationLimits(
float scale,
int32_t zero_point,
Activation Ac) {
switch (Ac) {
case Activation::NONE:
return {std::numeric_limits<T>::min(),
std::numeric_limits<T>::max()};
case Activation::RELU:
return {QuantizeValue<T>(scale, zero_point, 0.0),
std::numeric_limits<T>::max()};
default:
#ifdef _MSC_VER
__assume(0);
#else
__builtin_unreachable();
#endif
}
}
namespace at {
namespace native {
namespace qnnp_avgpool_helper {
Tensor qnnpack_avg_pool2d(
Tensor input,
IntArrayRef kernel_size,
IntArrayRef stride,
IntArrayRef padding,
bool ceil_mode,
bool count_include_pad,
c10::optional<int64_t> divisor_override);
} // qnnp_avgpool_helper
} // namespace native
} // namespace at
namespace {
C10_UNUSED std::vector<float> generate_requantization_scales(
const at::Tensor& weight_scales,
const float input_scale,
const float output_scale,
std::vector<float>& requant_scales) {
// Since weight scale is allocated with padding
// weight_scales.numel() gives us padded num elements.
const auto num_output_channels_padded = weight_scales.numel();
float *const weight_scales_data = weight_scales.data_ptr<float>();
if (static_cast<int64_t>(requant_scales.size()) < num_output_channels_padded) {
requant_scales.resize(num_output_channels_padded);
}
for (const auto i : c10::irange(num_output_channels_padded)) {
const auto inverse_output_scale = 1.f /output_scale;
requant_scales[i] = (weight_scales_data[i] * input_scale) * inverse_output_scale;
TORCH_CHECK(
(requant_scales[i] > 0.0f && std::isnormal(requant_scales[i])),
"failed to create op with requantization scale: ",
requant_scales[i],
": requantization scale must be finite and positive");
}
return requant_scales;
}
C10_UNUSED std::pair<std::vector<uint8_t>, at::Tensor> make_zero_points_and_scales_tensor(
const at::Tensor& weight_contig,
bool transpose = false,
uint32_t groups = 1
) {
const int out_ch_idx = transpose ? 1 : 0;
const auto num_output_channels = weight_contig.size(out_ch_idx) * (transpose ? groups : 1);
// Add 8 to account for bufferring needed by QNNPACK.
const auto num_output_channels_padded = num_output_channels + 8;
const auto qtype = weight_contig.qscheme();
std::vector<uint8_t> weight_zp(num_output_channels_padded, 0);
// Adjust weight zero point, similar to weight data.
if (qtype == at::kPerTensorAffine) {
for (const auto i : c10::irange(num_output_channels)) {
weight_zp[i] = (uint8_t)(weight_contig.q_zero_point() + 128);
}
} else if (qtype == at::kPerChannelAffine) {
TORCH_CHECK(
weight_contig.q_per_channel_zero_points().scalar_type() == at::kLong,
"Per channel zero points dtype must be long int.");
const int64_t* per_channel_zero_points =
weight_contig.q_per_channel_zero_points().data_ptr<int64_t>();
for (const auto i : c10::irange(num_output_channels)) {
weight_zp[i] = (uint8_t)(per_channel_zero_points[i] + 128);
}
} else {
TORCH_INTERNAL_ASSERT(false, "Unsupported quantization scheme.");
}
at:: Tensor weight_scales =
at::empty(
{num_output_channels_padded},
at::device(at::kCPU).dtype(at::kFloat));
float *const weight_scales_data = weight_scales.data_ptr<float>();
if (qtype == at::kPerTensorAffine) {
for (const auto i : c10::irange(num_output_channels)) {
weight_scales_data[i] = weight_contig.q_scale();
}
} else if (qtype == at::kPerChannelAffine) {
TORCH_CHECK(
weight_contig.q_per_channel_scales().scalar_type() == at::kDouble,
"Per channel scales dtype must be double.");
const double *const per_channel_scales =
weight_contig.q_per_channel_scales().data_ptr<double>();
for (const auto i : c10::irange(num_output_channels)) {
weight_scales_data[i] = static_cast<float>(per_channel_scales[i]);
}
} else {
TORCH_INTERNAL_ASSERT(false, "Unsupported quantization scheme.");
}
for (const auto i : c10::irange(num_output_channels, num_output_channels_padded)) {
weight_scales_data[i] = 1.f;
}
return {weight_zp, weight_scales};
}
} // namespace
#endif