#pragma once
#include <c10/core/DeviceType.h>
#include <c10/macros/Macros.h>
#include <c10/util/Exception.h>
#include <cstddef>
#include <functional>
#include <iosfwd>
#include <string>
namespace c10 {
/// An index representing a specific device; e.g., the 1 in GPU 1.
/// A DeviceIndex is not independently meaningful without knowing
/// the DeviceType it is associated; try to use Device rather than
/// DeviceIndex directly.
using DeviceIndex = int8_t;
/// Represents a a compute device on which a tensor is located. A device is
/// uniquely identified by a type, which specifies the type of machine it is
/// (e.g. CPU or CUDA GPU), and a device index or ordinal, which identifies the
/// specific compute device when there is more than one of a certain type. The
/// device index is optional, and in its defaulted state represents (abstractly)
/// "the current device". Further, there are two constraints on the value of the
/// device index, if one is explicitly stored:
/// 1. A negative index represents the current device, a non-negative index
/// represents a specific, concrete device,
/// 2. When the device type is CPU, the device index must be zero.
struct C10_API Device final {
using Type = DeviceType;
/// Constructs a new `Device` from a `DeviceType` and an optional device
/// index.
/* implicit */ Device(DeviceType type, DeviceIndex index = -1)
: type_(type), index_(index) {
validate();
}
/// Constructs a `Device` from a string description, for convenience.
/// The string supplied must follow the following schema:
/// `(cpu|cuda)[:<device-index>]`
/// where `cpu` or `cuda` specifies the device type, and
/// `:<device-index>` optionally specifies a device index.
/* implicit */ Device(const std::string& device_string);
/// Returns true if the type and index of this `Device` matches that of
/// `other`.
bool operator==(const Device& other) const noexcept {
return this->type_ == other.type_ && this->index_ == other.index_;
}
/// Returns true if the type or index of this `Device` differs from that of
/// `other`.
bool operator!=(const Device& other) const noexcept {
return !(*this == other);
}
/// Sets the device index.
void set_index(DeviceIndex index) {
index_ = index;
}
/// Returns the type of device this is.
DeviceType type() const noexcept {
return type_;
}
/// Returns the optional index.
DeviceIndex index() const noexcept {
return index_;
}
/// Returns true if the device has a non-default index.
bool has_index() const noexcept {
return index_ != -1;
}
/// Return true if the device is of CUDA type.
bool is_cuda() const noexcept {
return type_ == DeviceType::CUDA;
}
/// Return true if the device is of MPS type.
bool is_mps() const noexcept {
return type_ == DeviceType::MPS;
}
/// Return true if the device is of HIP type.
bool is_hip() const noexcept {
return type_ == DeviceType::HIP;
}
/// Return true if the device is of VE type.
bool is_ve() const noexcept {
return type_ == DeviceType::VE;
}
/// Return true if the device is of XPU type.
bool is_xpu() const noexcept {
return type_ == DeviceType::XPU;
}
/// Return true if the device is of IPU type.
bool is_ipu() const noexcept {
return type_ == DeviceType::IPU;
}
/// Return true if the device is of XLA type.
bool is_xla() const noexcept {
return type_ == DeviceType::XLA;
}
/// Return true if the device is of HPU type.
bool is_hpu() const noexcept {
return type_ == DeviceType::HPU;
}
/// Return true if the device is of Lazy type.
bool is_lazy() const noexcept {
return type_ == DeviceType::Lazy;
}
/// Return true if the device is of Vulkan type.
bool is_vulkan() const noexcept {
return type_ == DeviceType::Vulkan;
}
/// Return true if the device is of Metal type.
bool is_metal() const noexcept {
return type_ == DeviceType::Metal;
}
/// Return true if the device is of ORT type.
bool is_ort() const noexcept {
return type_ == DeviceType::ORT;
}
/// Return true if the device is of META type.
bool is_meta() const noexcept {
return type_ == DeviceType::Meta;
}
/// Return true if the device is of CPU type.
bool is_cpu() const noexcept {
return type_ == DeviceType::CPU;
}
/// Return true if the device supports arbirtary strides.
bool supports_as_strided() const noexcept {
return type_ != DeviceType::IPU && type_ != DeviceType::XLA &&
type_ != DeviceType::Lazy;
}
/// Same string as returned from operator<<.
std::string str() const;
private:
DeviceType type_;
DeviceIndex index_ = -1;
void validate() {
// Removing these checks in release builds noticeably improves
// performance in micro-benchmarks.
// This is safe to do, because backends that use the DeviceIndex
// have a later check when we actually try to switch to that device.
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
index_ == -1 || index_ >= 0,
"Device index must be -1 or non-negative, got ",
(int)index_);
TORCH_INTERNAL_ASSERT_DEBUG_ONLY(
!is_cpu() || index_ <= 0,
"CPU device index must be -1 or zero, got ",
(int)index_);
}
};
C10_API std::ostream& operator<<(std::ostream& stream, const Device& device);
} // namespace c10
namespace std {
template <>
struct hash<c10::Device> {
size_t operator()(c10::Device d) const noexcept {
// Are you here because this static assert failed? Make sure you ensure
// that the bitmasking code below is updated accordingly!
static_assert(sizeof(c10::DeviceType) == 1, "DeviceType is not 8-bit");
static_assert(sizeof(c10::DeviceIndex) == 1, "DeviceIndex is not 8-bit");
// Note [Hazard when concatenating signed integers]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// We must first convert to a same-sized unsigned type, before promoting to
// the result type, to prevent sign extension when any of the values is -1.
// If sign extension occurs, you'll clobber all of the values in the MSB
// half of the resulting integer.
//
// Technically, by C/C++ integer promotion rules, we only need one of the
// uint32_t casts to the result type, but we put in both for explicitness's
// sake.
uint32_t bits = static_cast<uint32_t>(static_cast<uint8_t>(d.type()))
<< 16 |
static_cast<uint32_t>(static_cast<uint8_t>(d.index()));
return std::hash<uint32_t>{}(bits);
}
};
} // namespace std