#pragma once
#include <c10/core/impl/HermeticPyObjectTLS.h>
#include <c10/core/impl/PyInterpreter.h>
#include <c10/util/Optional.h>
#include <c10/util/python_stub.h>
#include <atomic>
namespace c10 {
namespace impl {
struct C10_API PyObjectSlot {
public:
PyObjectSlot();
void destroy_pyobj_if_needed();
// Associate the TensorImpl with the specified PyObject, and, if necessary,
// also tag the interpreter.
//
// NB: This lives in a header so that we can inline away the switch on status
//
// NB: THIS FUNCTION CAN RAISE AN EXCEPTION. Make sure to clean up after
// PyObject if necessary!
void init_pyobj(
PyInterpreter* self_interpreter,
PyObject* pyobj,
PyInterpreterStatus status) {
impl::PyInterpreter* expected = nullptr;
switch (status) {
case impl::PyInterpreterStatus::DEFINITELY_UNINITIALIZED:
// caller guarantees there is no multithreaded access; if there is
// no data race OK to do a relaxed store
pyobj_interpreter_.store(self_interpreter, std::memory_order_relaxed);
break;
case impl::PyInterpreterStatus::TAGGED_BY_US:
// no tagging is necessary, the tag is already correct
break;
case impl::PyInterpreterStatus::MAYBE_UNINITIALIZED:
// attempt to claim this TensorImpl with the specified interpreter
// tag
if (pyobj_interpreter_.compare_exchange_strong(
expected, self_interpreter, std::memory_order_acq_rel)) {
break;
}
// test if, actually, it was already tagged by us! this situation can't
// be caused by a race, but it could be caused by a situation
// where someone conservatively tagged the tensor as MAYBE_UNINITIALIZED
// (because they didn't pre-check the tag) when actually it was
// owned by the interpreter
if (expected == self_interpreter) {
break;
}
// fallthrough, we lost the race. We are guaranteed not to lose the
// race with ourself, as calls to init_pyobj with the same interpreter
// ID must be sequentialized by the GIL
C10_FALLTHROUGH;
case impl::PyInterpreterStatus::TAGGED_BY_OTHER:
TORCH_CHECK(
false,
"cannot allocate PyObject for Tensor on interpreter ",
self_interpreter,
" that has already been used by another torch deploy interpreter ",
pyobj_interpreter_.load());
}
// we are the ONLY thread that can have gotten to this point. It is not
// possible to conflict with another zero interpreter as access is protected
// by GIL
// NB: owns_pyobj tag is initially false
pyobj_ = pyobj;
}
// Query the PyObject interpreter. This may return null if there is no
// interpreter. This is racy!
PyInterpreter* pyobj_interpreter();
PyObject* _unchecked_untagged_pyobj() const;
// Test the interpreter tag. If tagged for the current interpreter, return
// a non-nullopt (but possibly null) PyObject. If (possibly) untagged,
// returns a nullopt. If it is definitely invalid, raises an error.
//
// NB: this lives in header so that we can avoid actually creating the
// c10::optional
c10::optional<PyObject*> check_pyobj(PyInterpreter* self_interpreter) const {
// Note [Memory ordering on Python interpreter tag]
impl::PyInterpreter* interpreter =
pyobj_interpreter_.load(std::memory_order_acquire);
if (interpreter == nullptr) {
// NB: This never returns DEFINITELY_UNINITIALIZED because there is
// always the possibility that another thread races to initialize
// after we query here. The only time when we can conclude a tensor
// is definitely uninitialized is when we have just allocated it and
// it cannot have escaped to other threads yet
return c10::nullopt;
} else if (interpreter == self_interpreter) {
// NB: pyobj_ could still be null!
if (c10::impl::HermeticPyObjectTLS::get_state()) {
return c10::nullopt;
} else {
return c10::make_optional(_unchecked_untagged_pyobj());
}
} else {
TORCH_CHECK(
false,
"cannot access PyObject for Tensor on interpreter ",
(*self_interpreter)->name(),
" that has already been used by another torch deploy interpreter ",
(*pyobj_interpreter_.load())->name());
}
}
// Clear the PyObject field for an interpreter, in situations where we
// statically know the tensor is tagged with our interpreter.
void unchecked_clear_pyobj(PyInterpreter* interpreter);
PyInterpreter& load_pyobj_interpreter() const;
bool owns_pyobj();
void set_owns_pyobj(bool b);
private:
// This field contains the interpreter tag for this object. See
// Note [Python interpreter tag] for general context
//
// Note [Memory ordering on Python interpreter tag]
// ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
// What memory_order do we need when accessing this atomic? We don't
// need a single total modification order (as provided by
// memory_order_seq_cst) as pyobj_interpreter_ is monotonic: it can only
// transition from -1 to some positive integer and never changes afterwards.
// Because there is only one modification, it trivially already has a total
// modification order (e.g., we don't need fences or locked instructions on
// x86)
//
// In fact, one could make a reasonable argument that relaxed reads are OK,
// due to the presence of external locking (GIL) to ensure that interactions
// with other data structures are still correctly synchronized, so that
// we fall in the "Single-Location Data Structures" case as described in
// http://www.open-std.org/jtc1/sc22/wg21/docs/papers/2020/p2055r0.pdf
// However, on x86, it doesn't matter if I use acquire or relaxed on the load
// as I get the same assembly in both cases. So I just use the more
// conservative acquire (which will impede compiler optimizations but I don't
// care)
std::atomic<PyInterpreter*> pyobj_interpreter_;
// This field contains a reference to a PyObject representing this Tensor.
// If pyobj is nullptr, when we transfer Tensor to Python, we allocate a new
// PyObject for it and set this field. This field does not have to be
// protected by an atomic as it is only allowed to be accessed when you hold
// the GIL, or during destruction of the tensor.
//
// When a PyObject dies, you are obligated to clear this field
// (otherwise, you will try to use-after-free the pyobj); this currently
// occurs in THPVariable_clear in torch/csrc/autograd/python_variable.cpp
//
// NB: Ordinarily, this should not be a strong reference, as if the
// PyObject owns the Tensor, this would create a reference cycle.
// However, sometimes this ownership flips. To track who owns
// who, this has a single pointer tag indicating whether or not the
// C++ object owns the PyObject (the common case, zero, means PyObject
// owns the C++ object); see _unchecked_untagged_pyobj for raw access
// or check_pyobj for checked access. See references to PyObject
// resurrection in torch/csrc/autograd/python_variable.cpp
PyObject* pyobj_;
};
} // namespace impl
} // namespace c10