#pragma once
#include <ATen/core/ivalue.h>
#include <c10/util/flat_hash_map.h>
#include <c10/util/irange.h>
#include <torch/csrc/autograd/function.h>
#include <torch/csrc/autograd/variable.h>
#include <vector>
namespace torch {
namespace autograd {
using optional_variable_list = std::vector<c10::optional<Variable>>;
using _jvp_fn_t = std::function<variable_list(variable_list, variable_list)>;
TORCH_API std::vector<c10::optional<Variable>> _wrap_outputs(
const variable_list& input_vars,
const std::unordered_set<at::TensorImpl*>& non_differentiable,
const std::unordered_set<at::TensorImpl*>& dirty_inputs,
const at::ArrayRef<c10::optional<Variable>> raw_outputs,
const std::shared_ptr<Node>& cdata,
_jvp_fn_t jvp_user_function);
TORCH_API void check_variable_result(
const at::TensorBase& original,
const at::TensorBase& result,
std::string hook_name);
// Get the return type of the forward function of the custom Function class X
template <typename X, typename... Args>
using forward_t = decltype(X::forward(nullptr, std::declval<Args>()...));
/// To use custom autograd operations, implement a Function subclass with
/// static forward and backward functions:
///
/// `forward` can take as many arguments as you want and should return either a
/// variable list or a Variable. Use of any direct Variable arguments will be
/// registered in the graph but no vectors/sets or any other data structures
/// will be traversed. You can use c10::optional<Tensor> as one of the arguments
/// and it will be registered as a variable in the graph if the argument has a
/// value. It should take a pointer to `torch::autograd::AutogradContext` as the
/// first argument. Variables can be saved in the `ctx` using
/// `ctx->save_for_backward`
/// (see `torch::autograd::AutogradContext::save_for_backward`) and other data
/// can be saved in the `ctx->saved_data` map
/// (see `torch::autograd::AutogradContext::saved_data`)
/// in the form of `<std::string, at::IValue>` pairs.
///
/// `backward` should take a pointer to `torch::autograd::AutogradContext`
/// and a variable list containing as many Variables as there were outputs from
/// `forward` as arguments. It should return as many Variables as there were
/// inputs with each of them containing the gradient w.r.t. its corresponding
/// input. Variables saved in `forward` can be accessed with
/// `ctx->get_saved_variables` (see
/// `torch::autograd::AutogradContext::get_saved_variables`) and other saved
/// data can be accessed from `ctx->saved_data`.
///
/// For example:
/// ```
/// class MyFunction : public Function<MyFunction> {
/// public:
/// static variable_list forward(AutogradContext *ctx, int n, Variable var) {
/// // Save data for backward in context
/// ctx->saved_data["n"] = n;
/// var.mul_(2);
/// // Mark var as modified by inplace operation
/// ctx->mark_dirty({var});
/// return {var};
/// }
///
/// static variable_list backward(AutogradContext *ctx, variable_list
/// grad_output) {
/// // Use data saved in forward
/// auto n = ctx->saved_data["n"].toInt();
/// return {grad_output[0]*n};
/// }
/// };
/// ```
///
/// To use `MyFunction`:
/// ```
/// Variable x;
/// auto y = MyFunction::apply(6, x);
/// // Example backward call
/// y[0].sum().backward();
/// ```
template <class T>
struct TORCH_API Function {
// We need to use a different template parameter than T here because T will
// inherit from Function, and when Function<T> is instantiated, T::forward
// is not declared yet.
// The enable_if check is to ensure that the user doesn't explicitly provide
// the parameter X.
template <typename X = T, typename... Args>
static auto apply(Args&&... args)
-> std::enable_if_t<std::is_same<X, T>::value, forward_t<X, Args...>>;
};
/// Context to save information during `forward` that can be accessed in
/// `backward` in custom autograd operations (see `torch::autograd::Function`
/// for details).
struct TORCH_API AutogradContext {
AutogradContext() = default;
AutogradContext(const AutogradContext& other) = delete;
AutogradContext& operator=(const AutogradContext& other) = delete;
/// Can be used to save non-variable data for `backward`.
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
ska::flat_hash_map<std::string, at::IValue> saved_data;
/// Saves the list of variables for a future call to `backward`. This
/// should be called at most once from inside of `forward`.
void save_for_backward(variable_list to_save);
/// Marks variables in the list as modified in an in-place operation. This
/// should be called at most once from inside of `forward` and all arguments
/// should be inputs.
void mark_dirty(const variable_list& inputs);
/// Marks outputs in the list as not requiring gradients. This should be
/// called at most once from inside of `forward` and all arguments should be
/// outputs.
void mark_non_differentiable(const variable_list& outputs);
// Sets whether undefined output grad tensors should be expanded to tensors
// full of zeros before calling backward function. Default value is true.
void set_materialize_grads(bool value);
/// Get the list of variables that were saved in `forward` using
/// `save_for_backward()`. Before returning them to the user, a check is made
/// to ensure that they were not modified by any in-place operations.
variable_list get_saved_variables() const;
const std::unordered_set<at::TensorImpl*>& get_and_bump_dirty() const;
const std::unordered_set<at::TensorImpl*>& get_non_differentiable() const;
/// Expose the Node's `task_should_compute_output` method to the cpp
/// custom autograd Function as `needs_input_grad`.
bool needs_input_grad(size_t output_edge_index) const;
bool needs_input_grad(std::initializer_list<IndexRange> idxs) const;
private:
std::unordered_set<at::TensorImpl*> non_differentiable_;
std::unordered_set<at::TensorImpl*> dirty_inputs_;
std::vector<torch::autograd::SavedVariable> saved_variables_;
variable_list to_save_;
bool materialize_grads_{true};
// The CppNode in the autograd graph that owns this AutogradContext. We need a
// weak_ptr to avoid a refcycle. Since grad_fn_ owns this AutogradContext, it
// will always be alive when we want to use it.
std::weak_ptr<Node> grad_fn_;
bool has_freed_buffers_{false};
void save_variables();
template <class T>
friend struct CppNode;
};
struct TORCH_API VariableInfo {
explicit VariableInfo();
explicit VariableInfo(const Variable& var);
Variable zeros(at::OptionalDeviceGuard& device_guard) const;
at::Layout layout = at::Layout::Strided;
at::Device device = at::kCPU;
at::ScalarType scalar_type = at::kFloat;
std::vector<int64_t> size;
bool requires_grad;
bool is_empty;
};
// CppNode<T> is the Node in the autograd graph that represents the user defined
// backward function for Function<T>. Calls to CppNode::apply are forward to
// T::backward().
template <class T>
struct CppNode : public Node {
variable_list apply(variable_list&& inputs) override;
AutogradContext ctx_;
std::vector<bool> is_variable_input_;
std::vector<VariableInfo> input_info_;
std::vector<VariableInfo> output_info_;
void release_variables() override;
void set_ctx_grad_fn(const std::shared_ptr<Node>& node);
void save_variables_to_ctx();
};
struct ExtractVariables : IterArgs<ExtractVariables> {
std::vector<bool>& is_var_;
variable_list& list_;
ExtractVariables(std::vector<bool>& is_var, variable_list& list)
: is_var_(is_var), list_(list) {}
void operator()(const c10::optional<at::Tensor>& x) {
// NOLINTNEXTLINE(bugprone-branch-clone)
if (x.has_value() && x.value().defined()) {
is_var_.push_back(true);
list_.emplace_back(x.value());
} else {
is_var_.push_back(false);
}
}
void operator()(const at::Tensor& x) {
is_var_.push_back(true);
list_.emplace_back(x);
}
void operator()(const at::TensorList& list) {
for (const at::Tensor& x : list) {
is_var_.push_back(true);
list_.emplace_back(x);
}
}
template <typename T>
void operator()(const T& x) {
is_var_.push_back(false);
}
};
template <typename... Args>
inline void extract_vars(
std::vector<bool>& is_var,
variable_list& list,
Args&&... args) {
ExtractVariables(is_var, list).apply(std::forward<Args>(args)...);
}
template <typename T>
typename std::enable_if<std::is_same<T, variable_list>::value, T>::type
to_output_type(std::vector<c10::optional<Variable>>& output_list) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
variable_list result;
std::transform(
output_list.begin(),
output_list.end(),
std::back_inserter(result),
[](const c10::optional<Variable>& var) { return *var; });
return result;
}
template <typename T>
typename std::enable_if<std::is_same<T, Variable>::value, T>::type
to_output_type(std::vector<c10::optional<Variable>>& output_list) {
return *output_list[0];
}
inline std::vector<c10::optional<Variable>> to_optional(Variable& output) {
return std::vector<c10::optional<Variable>>{output};
}
inline std::vector<c10::optional<Variable>> to_optional(variable_list& output) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
std::vector<c10::optional<Variable>> result;
std::transform(
output.begin(),
output.end(),
std::back_inserter(result),
[](const Variable& var) { return var; });
return result;
}
template <class T>
template <typename X, typename... Args>
auto Function<T>::apply(Args&&... args)
-> std::enable_if_t<std::is_same<X, T>::value, forward_t<X, Args...>> {
std::shared_ptr<CppNode<T>> node(new CppNode<T>(), deleteNode);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
variable_list input_vars;
const size_t num_inputs = sizeof...(Args);
input_vars.reserve(num_inputs);
node->is_variable_input_.reserve(num_inputs);
// TODO Add tracing here
extract_vars(node->is_variable_input_, input_vars, args...);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
bool is_executable =
GradMode::is_enabled() && any_variable_requires_grad(input_vars);
auto next_edges =
(is_executable ? collect_next_edges(input_vars) : edge_list());
node->set_ctx_grad_fn(node);
node->set_next_edges(std::move(next_edges));
node->clear_input_metadata();
node->input_info_.reserve(input_vars.size());
for (auto& var : input_vars) {
node->input_info_.emplace_back(var);
}
using forward_return_t = forward_t<X, Args...>;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
forward_return_t outputs;
{
AutoGradMode grad_mode(false);
outputs = T::forward(&node->ctx_, std::forward<Args>(args)...);
}
_jvp_fn_t jvp_fn = [](variable_list inputs,
variable_list gI) -> variable_list {
TORCH_CHECK(
false,
"jvp is not implemented for the c++ API of custom Function yet.",
"Please open a feature request on GitHub if you need this.");
};
auto wrapped_outputs = _wrap_outputs(
input_vars,
node->ctx_.get_non_differentiable(),
node->ctx_.get_and_bump_dirty(),
to_optional(outputs),
is_executable ? node : nullptr,
jvp_fn);
node->output_info_.reserve(wrapped_outputs.size());
for (auto& output : wrapped_outputs) {
if (is_executable && output.has_value()) {
node->output_info_.emplace_back(output.value());
} else if (is_executable) {
node->output_info_.emplace_back();
}
}
if (is_executable) {
node->save_variables_to_ctx();
}
// wrapped_outputs will be a variable_list so, convert it to the correct
// return type. Only Variable and variable_list are accepted as return types.
return to_output_type<forward_return_t>(wrapped_outputs);
}
// The logic here is the same as PyNode::apply, so changes to it should be done
// in both the places
template <class T>
variable_list CppNode<T>::apply(variable_list&& inputs) {
at::OptionalDeviceGuard _device_guard;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
int num_inputs = inputs.size();
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
variable_list backward_inputs;
backward_inputs.reserve(num_inputs);
for (const auto i : c10::irange(num_inputs)) {
if (inputs[i].defined() || !ctx_.materialize_grads_) {
backward_inputs.emplace_back(inputs[i]);
} else {
backward_inputs.emplace_back(output_info_[i].zeros(_device_guard));
}
}
// Acquire lock to here protect thread safety on custom C++ Autograd Node
// This is needed for the custom Autograd Node since we don't know if the
// user defined Node will write to the shared data during backward.
// see Note [Thread Safety on Autograd Node]
std::lock_guard<std::mutex> lock(mutex_);
auto outputs = T::backward(&ctx_, backward_inputs);
const auto num_forward_inputs =
static_cast<int64_t>(is_variable_input_.size());
auto num_outputs = static_cast<int64_t>(outputs.size());
// Returning too many results is ok, but only as long as they're all
// undefined. Truncate the result vector in that case.
if (num_outputs > num_forward_inputs) {
bool all_undef = true;
for (const auto i : c10::irange(num_forward_inputs, num_outputs)) {
all_undef &= (!outputs[i].defined());
}
if (all_undef) {
outputs.resize(num_forward_inputs);
num_outputs = num_forward_inputs;
}
}
if (num_outputs != num_forward_inputs) {
std::string msg("function ");
msg += name() + " returned an incorrect number of gradients (expected ";
msg += c10::to_string(num_forward_inputs) + ", got ";
msg += c10::to_string(num_outputs) + ")";
throw std::runtime_error(msg);
}
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
variable_list results;
results.reserve(num_outputs);
for (const auto i : c10::irange(num_outputs)) {
if (!is_variable_input_[i]) {
if (outputs[i].defined()) {
std::string msg("function ");
msg += name() +
" returned a gradient different that is defined at position ";
msg += c10::to_string(i + 1) +
", but the corresponding forward input was not a Variable";
throw std::runtime_error(msg);
}
continue;
}
results.emplace_back(outputs[i]);
}
return results;
}
template <class T>
void CppNode<T>::release_variables() {
// lock to ensure thread safety, see [Thread Safety on Autograd Node]
std::lock_guard<std::mutex> lock(mutex_);
ctx_.saved_variables_.clear();
ctx_.has_freed_buffers_ = true;
}
template <class T>
void CppNode<T>::save_variables_to_ctx() {
ctx_.save_variables();
}
template <class T>
void CppNode<T>::set_ctx_grad_fn(const std::shared_ptr<Node>& node) {
ctx_.grad_fn_ = node;
}
} // namespace autograd
} // namespace torch