Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torch   python

Repository URL to install this package:

Version: 2.0.1+cpu 

/ include / torch / csrc / autograd / input_buffer.h

#pragma once

// The InputBuffer class accumulates a list of Variables for use by a
// function. It implements logic to avoid modifying the passed
// values in-place (adding an input twice will accumulate the result).
// This behaviour is needed and used only in backward graphs.

#include <memory>
#include <utility>
#include <vector>

#include <c10/core/Stream.h>
#include <c10/util/Optional.h>
#include <torch/csrc/autograd/variable.h>

namespace torch {
namespace autograd {

struct InputBuffer {
  explicit InputBuffer(size_t size) : buffer(size) {}
  InputBuffer(const InputBuffer& other) = delete;
  InputBuffer(InputBuffer&& other) = default;
  explicit InputBuffer(variable_list&& inputs) : buffer(std::move(inputs)){};
  InputBuffer& operator=(InputBuffer&& other) = default;

  // Accumulates the variable at a specified index.
  // The optional CUDA streams determine which stream the accumulation
  // is run on and how the addition is synchronized.
  void add(
      size_t pos,
      Variable&& var,
      const c10::optional<c10::Stream>& opt_producer_stream,
      const c10::optional<c10::Stream>& opt_consumer_stream);

  at::Device device() const;

  Variable operator[](size_t pos) {
    return buffer[pos];
  }

  // Returns the inputs as a list of variables. Destroys given InputBuffer.
  static std::vector<Variable> variables(InputBuffer&& g);

  std::vector<Variable> buffer;
};

} // namespace autograd
} // namespace torch