#pragma once
#include <c10/util/irange.h>
#include <torch/csrc/jit/ir/ir.h>
#include <torch/csrc/jit/ir/subgraph_matcher.h>
#include <torch/csrc/jit/jit_log.h>
#include <torch/csrc/jit/passes/quantization/helper.h>
#include <torch/csrc/jit/passes/subgraph_rewrite.h>
#include <string>
#include <unordered_map>
#include <utility>
namespace torch {
namespace jit {
struct QuantFusionInfo {
std::string quantized_op_name;
std::string pattern;
std::string replacement;
std::vector<MatchFilter> filters = {};
};
namespace {
std::string getExtraArgList(std::vector<std::string> extra_args) {
return std::accumulate(
extra_args.begin(),
extra_args.end(),
std::string(),
[](std::string acc, const std::string& arg) { return acc + ", " + arg; });
}
// Get the pattern we want to replace the match with
std::string getAtenOpPattern(
const std::string& graph_header,
const std::string& op_name,
const std::vector<std::string>& extra_op_args,
bool scalar_args = false) {
std::vector<std::string> _extra_op_args = extra_op_args;
std::string aten_op_pattern = graph_header;
if (scalar_args) {
for (const auto& extra_arg : _extra_op_args) {
aten_op_pattern
.append(R"(
)")
.append(extra_arg)
.append("_scalar = aten::item(")
.append(extra_arg)
.append(")");
}
for (auto& _extra_op_arg : _extra_op_args) {
_extra_op_arg.append("_scalar");
}
}
const auto& extra_op_arg_list = getExtraArgList(std::move(_extra_op_args));
aten_op_pattern += R"(
%r = )";
aten_op_pattern += op_name + "(" + "%a_quant" + extra_op_arg_list + ")";
aten_op_pattern += R"(
return (%r) )";
return aten_op_pattern;
}
// generate ops for quantize pattern for a scalar value
std::string getQuantizeForScalar(const std::string& value) {
// 6 is `torch.float` ScalarType, we are creating a float scalar
// tensor from a scalar value
std::string quantize_pattern = R"(
)" +
value + "_float_scalar_type : int = prim::Constant[value=6]()";
quantize_pattern += R"(
)" +
value + "_none : None = prim::Constant()";
quantize_pattern += R"(
)" +
value + "_tensor : Tensor = aten::scalar_tensor(" + value + ", " + value +
"_float_scalar_type";
for (const auto i : c10::irange(3)) {
(void)i; // Suppress unused variable warning
quantize_pattern += ", " + value + "_none";
}
quantize_pattern += ")";
quantize_pattern +=
R"(
)" +
value + "_quant = aten::quantize_per_tensor(" + value + "_tensor" +
getExtraArgList(
{value + "_scale", value + "_zero_point", value + "_dtype"}) +
")";
return quantize_pattern;
}
std::string getDequantize(const std::string& value) {
return R"(
)" +
value + "_dequant = aten::dequantize(" + value + "_quant)";
}
std::string getItem(const std::string& value) {
return R"(
)" +
value + "_scalar : float = aten::item(" + value + "_dequant)";
}
// Patterns for the ops that inherit parameters from input
std::string getInputTensorQParamOpPattern(
const std::string& op_name,
const std::vector<std::string>& extra_op_args) {
const auto& extra_op_arg_list = getExtraArgList(extra_op_args);
std::string op_pattern = "graph(%a_quant" + extra_op_arg_list + "):" + R"(
%a_dequant = aten::dequantize(%a_quant)
%r = )" +
op_name + "(" + "%a_dequant" + extra_op_arg_list + ")" + R"(
%r_scale : float = aten::q_scale(%a_quant)
%r_zero_point : int = aten::q_zero_point(%a_quant)
%r_dtype : int = prim::dtype(%a_quant)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
return op_pattern;
}
// QuantFusionInfo for the ops that inherit parameters from input
QuantFusionInfo getInputTensorQParamOpFusionInfo(
const std::string& op_name,
const std::vector<std::string>& extra_op_args) {
std::string op_pattern =
getInputTensorQParamOpPattern(op_name, extra_op_args);
const auto& extra_op_arg_list = getExtraArgList(extra_op_args);
std::string graph_header = "graph(%a_quant" + extra_op_arg_list + "):";
std::string op_replacement =
getAtenOpPattern(graph_header, op_name, extra_op_args);
return {op_name, std::move(op_pattern), std::move(op_replacement)};
}
// quant fusion for ops like `quantized::add_scalar`, `quantized::mul_scalar`
QuantFusionInfo getBinaryOpScalarFusionInfo(
const std::string& op_name,
const std::vector<std::string>& extra_op_args,
const std::string& quantized_op_name,
const std::vector<std::string>& extra_quantized_op_args,
const std::vector<MatchFilter>& filters = {}) {
std::string op_pattern =
getInputTensorQParamOpPattern(op_name, extra_op_args);
const auto& extra_op_arg_list = getExtraArgList(extra_op_args);
std::string graph_header = "graph(%a_quant" + extra_op_arg_list + "):";
std::string op_replacement = getAtenOpPattern(
graph_header, quantized_op_name, extra_quantized_op_args);
return {op_name, std::move(op_pattern), std::move(op_replacement), filters};
}
QuantFusionInfo getClampOpFusionInfo(
const std::string& op_name,
const std::vector<std::string>& extra_op_args) {
std::vector<std::string> header_args = extra_op_args;
std::vector<std::string> input_qparams = {"_scale", "_zero_point", "_dtype"};
for (const auto& arg : extra_op_args) {
for (const auto& qparam : input_qparams) {
header_args.push_back(arg + qparam);
}
}
for (const auto& qparam : input_qparams) {
header_args.push_back("%r" + qparam);
}
const auto& extra_header_arg_list = getExtraArgList(std::move(header_args));
std::string graph_header = "graph(%a_quant" + extra_header_arg_list + "):";
std::string op_pattern = graph_header;
for (const auto& arg : extra_op_args) {
op_pattern += getQuantizeForScalar(arg);
op_pattern += getDequantize(arg);
op_pattern += getItem(arg);
}
op_pattern += getDequantize("%a");
op_pattern += R"(
%r = )";
std::vector<std::string> scalar_extra_args;
scalar_extra_args.reserve(extra_op_args.size());
for (const auto& arg : extra_op_args) {
scalar_extra_args.push_back(arg + "_scalar");
}
op_pattern += op_name + "(" + "%a_dequant" +
getExtraArgList(std::move(scalar_extra_args)) + ")";
// IR pattern common to all ops that inherit qparam from input
op_pattern += R"(
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
std::string aten_op_pattern =
getAtenOpPattern(graph_header, op_name, extra_op_args);
return {op_name, std::move(op_pattern), std::move(aten_op_pattern)};
}
// Patterns for the ops that has fixed quantization parameters
QuantFusionInfo getFixedQParamOpFusionInfo(
const std::string& op_name,
const std::vector<std::string>& extra_op_args,
bool is_symmetric) {
const auto& extra_op_arg_list = getExtraArgList(extra_op_args);
std::string graph_header = "graph(%a_quant" + extra_op_arg_list + "):";
std::string op_pattern = graph_header;
op_pattern += R"(
%a_dequant = aten::dequantize(%a_quant)
%r = )";
op_pattern += op_name + "(" + "%a_dequant" + extra_op_arg_list + ")";
// IR pattern common to all ops with fixed quantization parameters for
// asymetric quantization
std::string asym_fixed_qparam_op_suffix = R"(
%r_scale : float = prim::Constant[value=0.00390625]()
%r_zero_point : int = prim::Constant[value=0]()
%r_dtype : int = prim::Constant[value=13]()
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
std::string sym_fixed_qparam_op_suffix = R"(
%r_scale : float = prim::Constant[value=0.0078125]()
%r_zero_point : int = prim::Constant[value=128]()
%r_dtype : int = prim::Constant[value=13]()
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
op_pattern +=
is_symmetric ? sym_fixed_qparam_op_suffix : asym_fixed_qparam_op_suffix;
std::string aten_op_pattern =
getAtenOpPattern(graph_header, op_name, extra_op_args);
return {op_name, std::move(op_pattern), std::move(aten_op_pattern)};
}
// filter that checks %b_scalar is a scalar
bool input_b_is_scalar(
const Match& match,
const std::unordered_map<std::string, Value*>& vmap) {
const auto& match_vmap = match.values_map;
auto b_scalar = match_vmap.at(vmap.at("b_scalar"));
return isScalar(b_scalar);
}
// Patterns for ops that require observation for output quantization parameters
// Example:
//
// before fusion:
//
// graph(%a_quant, %r_scale, %r_zero_point, %r_dtype):
// %a_dequant = aten::dequantize(%a_quant)
// %r = {op_name}(%a_dequant, {extra_args})
// %r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point,
// %r_dtype) return (%r_quant)
//
// after fusion:
//
// graph(%a_quant, %r_scale, %r_zero_point, %r_dtype):
// %r_quant = {quantized_op_name}(%a_quant, {extra_args}, %r_scale,
// %r_zero_point) return (%r_quant)
QuantFusionInfo getObservedQParamOpFusionInfo(
const std::string& fp_op_name,
const std::string& q_op_name,
const std::vector<std::string>& fp_extra_args,
const std::vector<std::string>& q_extra_args) {
const auto& fp_extra_arg_list = getExtraArgList(fp_extra_args);
const auto& q_extra_arg_list = getExtraArgList(q_extra_args);
std::string op_pattern = "graph(%a_quant" + fp_extra_arg_list +
", %r_scale, %r_zero_point, %r_dtype):" + R"(
%a_dequant = aten::dequantize(%a_quant)
%r = )" +
fp_op_name + "(" + "%a_dequant" + fp_extra_arg_list + ")" + R"(
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
std::string aten_op_pattern = "graph(%a_quant" + fp_extra_arg_list +
", %r_scale, %r_zero_point, %r_dtype):" + R"(
%r_quant = )" +
q_op_name + "(%a_quant" + q_extra_arg_list +
", %r_scale, %r_zero_point)" + R"(
return (%r_quant) )";
return {q_op_name, std::move(op_pattern), std::move(aten_op_pattern)};
}
} // namespace
std::vector<QuantFusionInfo> quant_fusion_pattern_and_replacements() {
// aten::conv1d
std::string conv1d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv1d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%r = aten::conv1d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// aten::conv1d - aten::relu
std::string conv1d_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv1d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%conv_out = aten::conv1d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r = aten::relu(%conv_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// aten::conv1d - aten::relu_
std::string conv1d_inplace_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv1d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%conv_out = aten::conv1d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r = aten::relu_(%conv_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// quantized::conv1d
std::string quantized_conv1d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%r_quant = quantized::conv1d(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r_quant) )";
// quantized::conv1d_relu
std::string quantized_conv1d_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%r_quant = quantized::conv1d_relu(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r_quant) )";
// aten::conv2d
std::string conv2d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv2d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%r = aten::conv2d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// aten::conv2d - aten::relu
std::string conv2d_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv2d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%conv_out = aten::conv2d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r = aten::relu(%conv_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// aten::conv2d - aten::relu_
std::string conv2d_inplace_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv2d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%conv_out = aten::conv2d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r = aten::relu_(%conv_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// quantized::conv2d
std::string quantized_conv2d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%r_quant = quantized::conv2d(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r_quant) )";
// quantized::conv2d_relu
std::string quantized_conv2d_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%r_quant = quantized::conv2d_relu(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r_quant) )";
// aten::conv3d
std::string conv3d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv3d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%r = aten::conv3d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// aten::conv3d - aten::relu
std::string conv3d_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv3d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%conv_out = aten::conv3d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r = aten::relu(%conv_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// aten::conv3d - aten::relu_
std::string conv3d_inplace_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv3d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%conv_out = aten::conv3d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
%r = aten::relu_(%conv_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// quantized::conv3d
std::string quantized_conv3d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%r_quant = quantized::conv3d(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r_quant) )";
// quantized::conv3d_relu
std::string quantized_conv3d_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %dilation, %groups):
%r_quant = quantized::conv3d_relu(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r_quant) )";
// aten::conv_transpose1d
std::string conv_transpose1d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %output_padding, %groups, %dilation):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv_transpose1d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%r = aten::conv_transpose1d(%a_dequant, %w_dequant, %b, %stride, %padding, %output_padding, %groups, %dilation)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// quantized::conv_transpose1d
std::string quantized_conv_transpose1d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %output_padding, %groups, %dilation):
%r_quant = quantized::conv_transpose1d(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r_quant) )";
// aten::conv_transpose2d
std::string conv_transpose2d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %output_padding, %groups, %dilation):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::conv_transpose2d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%r = aten::conv_transpose2d(%a_dequant, %w_dequant, %b, %stride, %padding, %output_padding, %groups, %dilation)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// quantized::conv_transpose1d
std::string quantized_conv_transpose2d = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype, %stride, %padding, %output_padding, %groups, %dilation):
%r_quant = quantized::conv_transpose2d(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r_quant) )";
std::string add_relu = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_add = aten::add(%a_dequant, %b_dequant, %alpha)
%r_relu = aten::relu(%r_add)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string add_inplace_relu = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_add = aten::add(%a_dequant, %b_dequant, %alpha)
%r_relu = aten::relu_(%r_add)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string inplace_add_relu = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_add = aten::add_(%a_dequant, %b_dequant, %alpha)
%r_relu = aten::relu(%r_add)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string inplace_add_inplace_relu = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_add = aten::add_(%a_dequant, %b_dequant, %alpha)
%r_relu = aten::relu_(%r_add)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string quantized_add_relu = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%r = quantized::add_relu(%a_quant, %b_quant, %scale, %zero_point)
return (%r) )";
// aten::linear
std::string linear = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::linear_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%r = aten::linear(%a_dequant, %w_dequant, %b)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
std::string linear_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::linear_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%linear_out = aten::linear(%a_dequant, %w_dequant, %b)
%r = aten::relu(%linear_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
std::string linear_inplace_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype):
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::linear_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%linear_out = aten::linear(%a_dequant, %w_dequant, %b)
%r = aten::relu_(%linear_out)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// quantized::linear
std::string quantized_linear = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype):
%r = quantized::linear(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
std::string quantized_linear_relu = R"(
graph(%a_quant, %packed_params, %r_scale, %r_zero_point, %r_dtype):
%r = quantized::linear_relu(%a_quant, %packed_params, %r_scale, %r_zero_point)
return (%r) )";
std::string cat = R"(
graph(%input_quant, %dim, %r_scale, %r_zero_point, %r_dtype):
%input_dequant = aten::dequantize(%input_quant)
%r = aten::cat(%input_dequant, %dim)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
std::string quantized_cat = R"(
graph(%input_quant, %dim, %r_scale, %r_zero_point, %r_dtype):
%r_quant = quantized::cat(%input_quant, %dim, %r_scale, %r_zero_point)
return (%r_quant) )";
// aten::add
std::string add = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_add = aten::add(%a_dequant, %b_dequant, %alpha)
%r = aten::quantize_per_tensor(%r_add, %scale, %zero_point, %dtype)
return (%r) )";
// TODO: add %dtype after when https://github.com/pytorch/pytorch/issues/34351
// is fixed
// quantized::add
std::string quantized_add = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%r = quantized::add(%a_quant, %b_quant, %scale, %zero_point)
return (%r) )";
// aten::add_
std::string inplace_add = R"(
graph(%a_quant, %b_quant, %alpha, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_add = aten::add_(%a_dequant, %b_dequant, %alpha)
%r = aten::quantize_per_tensor(%r_add, %scale, %zero_point, %dtype)
return (%r) )";
auto add_scalar = getBinaryOpScalarFusionInfo(
"aten::add",
{"%b_scalar", "%alpha"},
"quantized::add_scalar",
{"%b_scalar"},
{aten_add_alpha_is_one, input_b_is_scalar});
auto add_scalar_out = getBinaryOpScalarFusionInfo(
"aten::add_",
{"%b_scalar", "%alpha"},
"quantized::add_scalar_out",
{"%b_scalar", "%a_quant"},
{aten_add_alpha_is_one, input_b_is_scalar});
// quantized::add_scalar_relu -- fusing quantized::add_scalar
// and aten::relu
auto quantized_add_scalar_relu_pattern = R"(
graph(%a_quant, %b_scalar):
%r_add = quantized::add_scalar(%a_quant, %b_scalar)
%r = aten::relu(%r_add)
return (%r) )";
auto quantized_add_scalar_inplace_relu_pattern = R"(
graph(%a_quant, %b_scalar):
%r_add = quantized::add_scalar(%a_quant, %b_scalar)
%r = aten::relu_(%r_add)
return (%r) )";
auto quantized_add_scalar_relu_replacement = R"(
graph(%a_quant, %b_scalar):
%r = quantized::add_scalar_relu(%a_quant, %b_scalar)
return (%r) )";
// quantized::add_scalar_relu_out -- fusing quantized::add_scalarOut
// and aten::relu
auto quantized_add_scalar_relu_out_pattern = R"(
graph(%a_quant, %b_scalar):
%r_add = quantized::add_scalar_out(%a_quant, %b_scalar, %a_quant)
%r = aten::relu(%r_add)
return (%r) )";
auto quantized_add_scalar_inplace_relu_out_pattern = R"(
graph(%a_quant, %b_scalar):
%r_add = quantized::add_scalar_out(%a_quant, %b_scalar, %a_quant)
%r = aten::relu_(%r_add)
return (%r) )";
auto quantized_add_scalar_relu_out_replacement = R"(
graph(%a_quant, %b_scalar):
%r = quantized::add_scalar_relu_out(%a_quant, %b_scalar, %a_quant)
return (%r) )";
// quantized::batch_norm
std::string batch_norm = R"(
graph(%a_quant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7, %scale, %zero_point, %scalar_type):
%a_dequant = aten::dequantize(%a_quant)
%r_bn = aten::batch_norm(%a_dequant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7)
%r = aten::quantize_per_tensor(%r_bn, %scale, %zero_point, %scalar_type)
return (%r) )";
std::string quantized_batch_norm = R"(
graph(%a_quant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7, %scale, %zero_point, %scalar_type):
%r = quantized::batch_norm(%a_quant, %weight, %bias, %mean, %var, %eps, %scale, %zero_point)
return (%r) )";
std::string batch_norm_relu = R"(
graph(%a_quant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7, %scale, %zero_point, %scalar_type):
%a_dequant = aten::dequantize(%a_quant)
%bn_out = aten::batch_norm(%a_dequant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7)
%relu = aten::relu(%bn_out)
%r = aten::quantize_per_tensor(%relu, %scale, %zero_point, %scalar_type)
return (%r) )";
std::string batch_norm_inplace_relu = R"(
graph(%a_quant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7, %scale, %zero_point, %scalar_type):
%a_dequant = aten::dequantize(%a_quant)
%bn_out = aten::batch_norm(%a_dequant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7)
%relu = aten::relu_(%bn_out)
%r = aten::quantize_per_tensor(%relu, %scale, %zero_point, %scalar_type)
return (%r) )";
std::string quantized_batch_norm_relu = R"(
graph(%a_quant, %weight, %bias, %mean, %var, %training, %eaf, %eps, %7, %scale, %zero_point, %scalar_type):
%r = quantized::batch_norm_relu(%a_quant, %weight, %bias, %mean, %var, %eps, %scale, %zero_point)
return (%r) )";
// aten::mul
std::string mul = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_mul = aten::mul(%a_dequant, %b_dequant)
%r = aten::quantize_per_tensor(%r_mul, %scale, %zero_point, %dtype)
return (%r) )";
// aten::mul_
std::string inplace_mul = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_mul = aten::mul_(%a_dequant, %b_dequant)
%r = aten::quantize_per_tensor(%r_mul, %scale, %zero_point, %dtype)
return (%r) )";
// quantized::mul
std::string quantized_mul = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%r = quantized::mul(%a_quant, %b_quant, %scale, %zero_point)
return (%r) )";
auto mul_scalar = getBinaryOpScalarFusionInfo(
"aten::mul",
{"%b_scalar"},
"quantized::mul_scalar",
{"%b_scalar"},
{input_b_is_scalar});
auto mul_scalar_out = getBinaryOpScalarFusionInfo(
"aten::mul_",
{"%b_scalar"},
"quantized::mul_scalar_out",
{"%b_scalar", "%a_quant"},
{input_b_is_scalar});
// quantized::mul_relu
std::string mul_relu = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_mul = aten::mul(%a_dequant, %b_dequant)
%r_relu = aten::relu(%r_mul)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string mul_inplace_relu = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_mul = aten::mul(%a_dequant, %b_dequant)
%r_relu = aten::relu_(%r_mul)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string inplace_mul_relu = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_mul = aten::mul_(%a_dequant, %b_dequant)
%r_relu = aten::relu(%r_mul)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string inplace_mul_inplace_relu = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%a_dequant = aten::dequantize(%a_quant)
%b_dequant = aten::dequantize(%b_quant)
%r_mul = aten::mul_(%a_dequant, %b_dequant)
%r_relu = aten::relu_(%r_mul)
%r = aten::quantize_per_tensor(%r_relu, %scale, %zero_point, %dtype)
return (%r) )";
std::string quantized_mul_relu = R"(
graph(%a_quant, %b_quant, %scale, %zero_point, %dtype):
%r = quantized::mul_relu(%a_quant, %b_quant, %scale, %zero_point)
return (%r) )";
// quantized::mul_scalar_relu -- fusing quantized::mul_scalar
// and aten::relu
auto quantized_mul_scalar_relu_pattern = R"(
graph(%a_quant, %b_scalar):
%r_mul = quantized::mul_scalar(%a_quant, %b_scalar)
%r = aten::relu(%r_mul)
return (%r) )";
auto quantized_mul_scalar_inplace_relu_pattern = R"(
graph(%a_quant, %b_scalar):
%r_mul = quantized::mul_scalar(%a_quant, %b_scalar)
%r = aten::relu_(%r_mul)
return (%r) )";
auto quantized_mul_scalar_relu_replacement = R"(
graph(%a_quant, %b_scalar):
%r = quantized::mul_scalar_relu(%a_quant, %b_scalar)
return (%r) )";
// quantized::mul_scalar_relu_out -- fusing quantized::mul_scalarOut
// and aten::relu
auto quantized_mul_scalar_relu_out_pattern = R"(
graph(%a_quant, %b_scalar):
%r_mul = quantized::mul_scalar_out(%a_quant, %b_scalar, %a_quant)
%r = aten::relu(%r_mul)
return (%r) )";
auto quantized_mul_scalar_inplace_relu_out_pattern = R"(
graph(%a_quant, %b_scalar):
%r_mul = quantized::mul_scalar_out(%a_quant, %b_scalar, %a_quant)
%r = aten::relu_(%r_mul)
return (%r) )";
auto quantized_mul_scalar_relu_out_replacement = R"(
graph(%a_quant, %b_scalar):
%r = quantized::mul_scalar_relu_out(%a_quant, %b_scalar, %a_quant)
return (%r) )";
// quantized::elu
std::string elu = R"(
graph(%a_quant, %alpha, %scale, %input_scale, %r_scale, %r_zero_point, %r_dtype):
%a_dequant = aten::dequantize(%a_quant)
%r = aten::elu(%a_dequant, %alpha, %scale, %input_scale)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
std::string quantized_elu = R"(
graph(%a_quant, %alpha, %scale, %input_scale, %r_scale, %r_zero_point, %r_dtype):
%r_quant = quantized::elu(%a_quant, %r_scale, %r_zero_point, %alpha, %scale, %input_scale)
return (%r_quant) )";
std::string elu_ = R"(
graph(%a_quant, %alpha, %scale, %input_scale, %r_scale, %r_zero_point, %r_dtype):
%a_dequant = aten::dequantize(%a_quant)
%r = aten::elu_(%a_dequant, %alpha, %scale, %input_scale)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
// ============= General Ops that inherit quantization paramters from input
// tensor =============
auto avg_pool1d = getInputTensorQParamOpFusionInfo(
"aten::avg_pool1d",
{"%kernel_size",
"%stride",
"%padding",
"%ceil_mode",
"%count_include_pad"});
auto avg_pool2d = getInputTensorQParamOpFusionInfo(
"aten::avg_pool2d",
{"%kernel_size",
"%stride",
"%padding",
"%ceil_mode",
"%count_include_pad",
"%divisor_override"});
std::string common_general_value_op = R"(
%r_scale : float = aten::q_scale(%a_quant)
%r_zero_point : int = aten::q_zero_point(%a_quant)
%r_dtype : int = prim::dtype(%a_quant)
%r_quant = aten::quantize_per_tensor(%r, %r_scale, %r_zero_point, %r_dtype)
return (%r_quant) )";
auto avg_pool3d = getInputTensorQParamOpFusionInfo(
"aten::avg_pool3d",
{"%kernel_size",
"%stride",
"%padding",
"%ceil_mode",
"%count_include_pad",
"%divisor_override"});
auto adaptive_avg_pool1d = getInputTensorQParamOpFusionInfo(
"aten::adaptive_avg_pool1d", {"%output_size"});
auto adaptive_avg_pool2d = getInputTensorQParamOpFusionInfo(
"aten::adaptive_avg_pool2d", {"%output_size"});
auto adaptive_avg_pool3d = getInputTensorQParamOpFusionInfo(
"aten::adaptive_avg_pool3d", {"%output_size"});
auto mean1 = getInputTensorQParamOpFusionInfo("aten::mean", {"%dim"});
auto mean2 = getInputTensorQParamOpFusionInfo(
"aten::mean", {"%dim", "%keepdim", "%out"});
auto upsample_nearest1d_vec = getInputTensorQParamOpFusionInfo(
"aten::upsample_nearest1d", {"%output_size", "%scale_factors"});
auto upsample_nearest2d_vec = getInputTensorQParamOpFusionInfo(
"aten::upsample_nearest2d", {"%output_size", "%scale_factors"});
auto upsample_nearest3d_vec = getInputTensorQParamOpFusionInfo(
"aten::upsample_nearest3d", {"%output_size", "%scale_factors"});
auto upsample_linear1d_vec = getInputTensorQParamOpFusionInfo(
"aten::upsample_linear1d",
{"%output_size", "%align_corners", "%scale_factors"});
auto upsample_bilinear2d_vec = getInputTensorQParamOpFusionInfo(
"aten::upsample_bilinear2d",
{"%output_size", "%align_corners", "%scale_factors"});
auto upsample_trilinear3d_vec = getInputTensorQParamOpFusionInfo(
"aten::upsample_trilinear3d",
{"%output_size", "%align_corners", "%scale_factors"});
auto upsample_nearest1d = getInputTensorQParamOpFusionInfo(
"aten::upsample_nearest1d", {"%output_size", "%scales"});
auto upsample_nearest2d = getInputTensorQParamOpFusionInfo(
"aten::upsample_nearest2d", {"%output_size", "%scale_h", "%scale_w"});
auto upsample_nearest3d = getInputTensorQParamOpFusionInfo(
"aten::upsample_nearest3d",
{"%output_size", "%scale_d", "%scale_h", "%scale_w"});
auto upsample_linear1d = getInputTensorQParamOpFusionInfo(
"aten::upsample_linear1d", {"%output_size", "%align_corners", "%scales"});
auto upsample_bilinear2d = getInputTensorQParamOpFusionInfo(
"aten::upsample_bilinear2d",
{"%output_size", "%align_corners", "%scale_h", "%scale_w"});
auto upsample_trilinear3d = getInputTensorQParamOpFusionInfo(
"aten::upsample_trilinear3d",
{"%output_size", "%align_corners", "%scale_d", "%scale_h", "%scale_w"});
auto clamp = getClampOpFusionInfo("aten::clamp", {"%min", "%max"});
auto hardtanh = getClampOpFusionInfo("aten::hardtanh", {"%min", "%max"});
auto hardtanh_ = getClampOpFusionInfo("aten::hardtanh_", {"%min", "%max"});
auto leaky_relu =
getInputTensorQParamOpFusionInfo("aten::leaky_relu", {"%negative_slope"});
auto leaky_relu_ = getInputTensorQParamOpFusionInfo(
"aten::leaky_relu_", {"%negative_slope"});
// Ops with fixed quantization parameters
auto hardsigmoid = getFixedQParamOpFusionInfo("aten::hardsigmoid", {}, false);
auto hardsigmoid_ =
getFixedQParamOpFusionInfo("aten::hardsigmoid_", {}, false);
auto sigmoid = getFixedQParamOpFusionInfo("aten::sigmoid", {}, false);
auto sigmoid_ = getFixedQParamOpFusionInfo("aten::sigmoid_", {}, false);
auto tanh = getFixedQParamOpFusionInfo("aten::tanh", {}, true);
auto tanh_ = getFixedQParamOpFusionInfo("aten::tanh_", {}, true);
auto hardswish = getObservedQParamOpFusionInfo(
"aten::hardswish", "quantized::hardswish", {}, {});
auto hardswish_ = getObservedQParamOpFusionInfo(
"aten::hardswish_", "quantized::hardswish", {}, {});
auto layer_norm = getObservedQParamOpFusionInfo(
"aten::layer_norm",
"quantized::layer_norm",
{"%normalized_shape", "%weight", "%bias", "%eps", "%cudnn_enabled"},
{"%normalized_shape", "%weight", "%bias", "%eps"});
auto group_norm = getObservedQParamOpFusionInfo(
"aten::group_norm",
"quantized::group_norm",
{"%num_groups", "%weight", "%bias", "%eps", "%cudnn_enabled"},
{"%num_groups", "%weight", "%bias", "%eps"});
auto instance_norm = getObservedQParamOpFusionInfo(
"aten::instance_norm",
"quantized::instance_norm",
{"%weight",
"%bias",
"%running_mean",
"%running_var",
"%use_input_stats",
"%momentum",
"%eps",
"%cudnn_enabled"},
{"%weight", "%bias", "%eps"});
return {
{"quantized::conv1d", std::move(conv1d), std::move(quantized_conv1d)},
{"quantized::conv1d_relu", std::move(conv1d_relu), quantized_conv1d_relu},
{"quantized::conv1d_relu",
std::move(conv1d_inplace_relu),
std::move(quantized_conv1d_relu)},
{"quantized::conv2d", std::move(conv2d), std::move(quantized_conv2d)},
{"quantized::conv2d_relu", std::move(conv2d_relu), quantized_conv2d_relu},
{"quantized::conv2d_relu",
std::move(conv2d_inplace_relu),
std::move(quantized_conv2d_relu)},
{"quantized::conv3d", std::move(conv3d), std::move(quantized_conv3d)},
{"quantized::conv3d_relu", std::move(conv3d_relu), quantized_conv3d_relu},
{"quantized::conv3d_relu",
std::move(conv3d_inplace_relu),
std::move(quantized_conv3d_relu)},
{"quantized::conv_transpose1d",
std::move(conv_transpose1d),
std::move(quantized_conv_transpose1d)},
{"quantized::conv_transpose2d",
std::move(conv_transpose2d),
std::move(quantized_conv_transpose2d)},
{"quantized::linear", std::move(linear), std::move(quantized_linear)},
{"quantized::linear_relu", std::move(linear_relu), quantized_linear_relu},
{"quantized::linear_relu",
std::move(linear_inplace_relu),
std::move(quantized_linear_relu)},
{"quantized::add_relu",
std::move(add_relu),
quantized_add_relu,
{aten_add_alpha_is_one}},
{"quantized::add_relu",
std::move(add_inplace_relu),
quantized_add_relu,
{aten_add_alpha_is_one}},
{"quantized::add_relu",
std::move(inplace_add_relu),
quantized_add_relu,
{aten_add_alpha_is_one}},
{"quantized::add_relu",
std::move(inplace_add_inplace_relu),
std::move(quantized_add_relu),
{aten_add_alpha_is_one}},
std::move(add_scalar),
std::move(add_scalar_out),
// note that these must come after quantized::add_scalar and
// quantized::add_scalar_out patterns
{"quantized::add_scalar_relu",
quantized_add_scalar_relu_pattern,
quantized_add_scalar_relu_replacement},
{"quantized::add_scalar_relu",
quantized_add_scalar_inplace_relu_pattern,
quantized_add_scalar_relu_replacement},
{"quantized::add_scalar_relu_out",
quantized_add_scalar_relu_out_pattern,
quantized_add_scalar_relu_out_replacement},
{"quantized::add_scalar_relu_out",
quantized_add_scalar_inplace_relu_out_pattern,
quantized_add_scalar_relu_out_replacement},
{"quantized::add",
std::move(add),
quantized_add,
{aten_add_alpha_is_one}},
{"quantized::add",
std::move(inplace_add),
std::move(quantized_add),
{aten_add_alpha_is_one}},
{"quantized::cat", std::move(cat), std::move(quantized_cat)},
{"quantized::batch_norm",
std::move(batch_norm),
std::move(quantized_batch_norm)},
{"quantized::batch_norm_relu",
std::move(batch_norm_relu),
quantized_batch_norm_relu},
{"quantized::batch_norm_relu",
std::move(batch_norm_inplace_relu),
std::move(quantized_batch_norm_relu)},
std::move(mul_scalar),
std::move(mul_scalar_out),
// note that these must come after quantized::mul_scalar and
// quantized::mul_scalar_out patterns
{"quantized::mul_scalar_relu",
quantized_mul_scalar_relu_pattern,
quantized_mul_scalar_relu_replacement},
{"quantized::mul_scalar_relu",
quantized_mul_scalar_inplace_relu_pattern,
quantized_mul_scalar_relu_replacement},
{"quantized::mul_scalar_relu_out",
quantized_mul_scalar_relu_out_pattern,
quantized_mul_scalar_relu_out_replacement},
{"quantized::mul_scalar_relu_out",
quantized_mul_scalar_inplace_relu_out_pattern,
quantized_mul_scalar_relu_out_replacement},
{"quantized::mul_relu", std::move(mul_relu), quantized_mul_relu},
{"quantized::mul_relu", std::move(mul_inplace_relu), quantized_mul_relu},
{"quantized::mul_relu", std::move(inplace_mul_relu), quantized_mul_relu},
{"quantized::mul_relu",
std::move(inplace_mul_inplace_relu),
std::move(quantized_mul_relu)},
{"quantized::mul", std::move(mul), quantized_mul},
{"quantized::mul", std::move(inplace_mul), std::move(quantized_mul)},
std::move(hardswish),
std::move(hardswish_),
std::move(layer_norm),
std::move(group_norm),
std::move(instance_norm),
{"quantized::elu", std::move(elu), quantized_elu},
{"quantized::elu_", std::move(elu_), std::move(quantized_elu)},
std::move(avg_pool1d),
std::move(avg_pool2d),
std::move(avg_pool3d),
std::move(adaptive_avg_pool1d),
std::move(adaptive_avg_pool2d),
std::move(adaptive_avg_pool3d),
std::move(mean1),
std::move(mean2),
std::move(upsample_nearest1d),
std::move(upsample_nearest2d),
std::move(upsample_nearest3d),
std::move(upsample_linear1d),
std::move(upsample_bilinear2d),
std::move(upsample_trilinear3d),
std::move(upsample_nearest1d_vec),
std::move(upsample_nearest2d_vec),
std::move(upsample_nearest3d_vec),
std::move(upsample_linear1d_vec),
std::move(upsample_bilinear2d_vec),
std::move(upsample_trilinear3d_vec),
std::move(clamp),
std::move(hardtanh),
std::move(hardtanh_),
std::move(leaky_relu),
std::move(leaky_relu_),
// fixed qparam ops
std::move(hardsigmoid),
std::move(hardsigmoid_),
std::move(sigmoid),
std::move(sigmoid_),
std::move(tanh),
std::move(tanh_),
};
}
inline std::vector<QuantFusionInfo>
dynamic_quantized_linear_pattern_and_replacements() {
std::string linear_dynamic = R"(
graph(%packed_params, %a):
%w_quant : Tensor, %b : Tensor? = quantized::linear_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%r = aten::linear(%a, %w_dequant, %b)
return (%r) )";
// This pattern ignores reduce range
// Set the reduce range to default to true, since qnnpack backend ignores this
// argument.
std::string quantized_linear_dynamic = R"(
graph(%packed_params, %a):
%reduce_range : bool = prim::Constant[value=1]()
%r = quantized::linear_dynamic(%a, %packed_params, %reduce_range)
return (%r) )";
return {
{"quantized::linear_dynamic",
std::move(linear_dynamic),
std::move(quantized_linear_dynamic)},
};
}
std::vector<QuantFusionInfo> dynamic_quant_fusion_pattern_and_replacements() {
std::string linear_dynamic = R"(
graph(%packed_params, %a, %reduce_range, %a_dtype):
%a_scale : float, %a_zero_point : int = aten::_choose_qparams_per_tensor(%a, %reduce_range)
%a_quant = aten::quantize_per_tensor(%a, %a_scale, %a_zero_point, %a_dtype)
%a_dequant = aten::dequantize(%a_quant)
%w_quant : Tensor, %b : Tensor? = quantized::linear_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant)
%r = aten::linear(%a_dequant, %w_dequant, %b)
return (%r) )";
std::string quantized_linear_dynamic = R"(
graph(%packed_params, %a, %reduce_range, %a_dtype):
%r = quantized::linear_dynamic(%a, %packed_params, %reduce_range)
return (%r) )";
std::string linear_dynamic_fp16 = R"(
graph(%packed_params, %a):
%w_unpacked : Tensor, %b : Tensor? = quantized::linear_unpack_fp16(%packed_params)
%r = aten::linear(%a, %w_unpacked, %b)
return (%r) )";
std::string quantized_linear_dynamic_fp16 = R"(
graph(%packed_params, %a):
%r = quantized::linear_dynamic_fp16(%a, %packed_params)
return (%r) )";
return {
{"quantized::linear_dynamic",
std::move(linear_dynamic),
std::move(quantized_linear_dynamic)},
{"quantized::linear_dynamic_fp16",
std::move(linear_dynamic_fp16),
std::move(quantized_linear_dynamic_fp16)},
};
}
std::vector<QuantFusionInfo> linear_prepack_unpack_patterns() {
std::string linear_with_quant = R"(
graph(%a_dequant, %w_quant, %b):
%w_dequant = aten::dequantize(%w_quant)
%r = aten::linear(%a_dequant, %w_dequant, %b)
return (%r) )";
std::string linear_with_quant_prepack = R"(
graph(%a_dequant, %w_quant, %b):
%packed_params = quantized::linear_prepack(%w_quant, %b)
%w_quant_unpacked : Tensor, %b_unpacked : Tensor? = quantized::linear_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant_unpacked)
%r = aten::linear(%a_dequant, %w_dequant, %b_unpacked)
return (%r) )";
std::string linear_fp16_with_cast = R"(
graph(%w, %a_dq, %b):
%fp16_tensor = aten::_saturate_weight_to_fp16(%w)
%r = aten::linear(%a_dq, %fp16_tensor, %b)
return (%r) )";
std::string linear_fp16_with_prepack = R"(
graph(%w, %a_dq, %b):
%packed_params = quantized::linear_prepack_fp16(%w, %b)
%w_unpacked : Tensor, %b_unpacked : Tensor? = quantized::linear_unpack_fp16(%packed_params)
%r = aten::linear(%a_dq, %w_unpacked, %b_unpacked)
return (%r) )";
return {
{"linear_prepack_unpack",
std::move(linear_with_quant),
std::move(linear_with_quant_prepack)},
{"linear_fp16_prepack_unpack",
std::move(linear_fp16_with_cast),
std::move(linear_fp16_with_prepack)},
};
}
std::vector<QuantFusionInfo> conv_prepack_unpack_patterns() {
std::string conv1d_with_quant = R"(
graph(%a_dequant, %w_quant, %b, %stride, %padding, %dilation, %groups):
%w_dequant = aten::dequantize(%w_quant)
%r = aten::conv1d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
return (%r) )";
std::string conv1d_with_quant_prepack = R"(
graph(%a_dequant, %w_quant, %b, %stride, %padding, %dilation, %groups):
%packed_params : __torch__.torch.classes.quantized.Conv2dPackedParamsBase = quantized::conv1d_prepack(%w_quant, %b, %stride, %padding, %dilation, %groups)
%w_quant_unpacked : Tensor, %b_unpacked : Tensor? = quantized::conv1d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant_unpacked)
%r = aten::conv1d(%a_dequant, %w_dequant, %b_unpacked, %stride, %padding, %dilation, %groups)
return (%r) )";
std::string conv2d_with_quant = R"(
graph(%a_dequant, %w_quant, %b, %stride, %padding, %dilation, %groups):
%w_dequant = aten::dequantize(%w_quant)
%r = aten::conv2d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
return (%r) )";
std::string conv2d_with_quant_prepack = R"(
graph(%a_dequant, %w_quant, %b, %stride, %padding, %dilation, %groups):
%packed_params : __torch__.torch.classes.quantized.Conv2dPackedParamsBase = quantized::conv2d_prepack(%w_quant, %b, %stride, %padding, %dilation, %groups)
%w_quant_unpacked : Tensor, %b_unpacked : Tensor? = quantized::conv2d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant_unpacked)
%r = aten::conv2d(%a_dequant, %w_dequant, %b_unpacked, %stride, %padding, %dilation, %groups)
return (%r) )";
std::string conv3d_with_quant = R"(
graph(%a_dequant, %w_quant, %b, %stride, %padding, %dilation, %groups):
%w_dequant = aten::dequantize(%w_quant)
%r = aten::conv3d(%a_dequant, %w_dequant, %b, %stride, %padding, %dilation, %groups)
return (%r) )";
std::string conv3d_with_quant_prepack = R"(
graph(%a_dequant, %w_quant, %b, %stride, %padding, %dilation, %groups):
%packed_params : __torch__.torch.classes.quantized.Conv3dPackedParamsBase = quantized::conv3d_prepack(%w_quant, %b, %stride, %padding, %dilation, %groups)
%w_quant_unpacked : Tensor, %b_unpacked : Tensor? = quantized::conv3d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant_unpacked)
%r = aten::conv3d(%a_dequant, %w_dequant, %b_unpacked, %stride, %padding, %dilation, %groups)
return (%r) )";
std::string conv_transpose1d_with_quant = R"(
graph(%a_dequant, %w_quant, %b, %stride, %padding, %output_padding, %groups, %dilation):
%w_dequant = aten::dequantize(%w_quant)
%r = aten::conv_transpose1d(%a_dequant, %w_dequant, %b, %stride, %padding, %output_padding, %groups, %dilation)
return (%r) )";
std::string conv_transpose1d_with_quant_prepack = R"(
graph(%a_dequant, %w_quant, %b, %stride, %padding, %output_padding, %groups, %dilation):
%packed_params : __torch__.torch.classes.quantized.Conv2dPackedParamsBase = quantized::conv_transpose1d_prepack(%w_quant, %b, %stride, %padding, %output_padding, %dilation, %groups)
%w_quant_unpacked : Tensor, %b_unpacked : Tensor? = quantized::conv_transpose1d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant_unpacked)
%r = aten::conv_transpose1d(%a_dequant, %w_dequant, %b_unpacked, %stride, %padding, %output_padding, %groups, %dilation)
return (%r) )";
std::string conv_transpose2d_with_quant = R"(
graph(%a_dequant, %w_quant, %b, %stride, %padding, %output_padding, %groups, %dilation):
%w_dequant = aten::dequantize(%w_quant)
%r = aten::conv_transpose2d(%a_dequant, %w_dequant, %b, %stride, %padding, %output_padding, %groups, %dilation)
return (%r) )";
std::string conv_transpose2d_with_quant_prepack = R"(
graph(%a_dequant, %w_quant, %b, %stride, %padding, %output_padding, %groups, %dilation):
%packed_params : __torch__.torch.classes.quantized.Conv2dPackedParamsBase = quantized::conv_transpose2d_prepack(%w_quant, %b, %stride, %padding, %output_padding, %dilation, %groups)
%w_quant_unpacked : Tensor, %b_unpacked : Tensor? = quantized::conv_transpose2d_unpack(%packed_params)
%w_dequant = aten::dequantize(%w_quant_unpacked)
%r = aten::conv_transpose2d(%a_dequant, %w_dequant, %b_unpacked, %stride, %padding, %output_padding, %groups, %dilation)
return (%r) )";
return {
{"conv1d_prepack_unpack",
std::move(conv1d_with_quant),
std::move(conv1d_with_quant_prepack)},
{"conv2d_prepack_unpack",
std::move(conv2d_with_quant),
std::move(conv2d_with_quant_prepack)},
{"conv3d_prepack_unpack",
std::move(conv3d_with_quant),
std::move(conv3d_with_quant_prepack)},
{"conv_transpose1d_prepack_unpack",
std::move(conv_transpose1d_with_quant),
std::move(conv_transpose1d_with_quant_prepack)},
{"conv_transpose2d_prepack_unpack",
std::move(conv_transpose2d_with_quant),
std::move(conv_transpose2d_with_quant_prepack)}};
}
} // namespace jit
} // namespace torch