Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torch   python

Repository URL to install this package:

Version: 2.0.1+cpu 

/ include / torch / csrc / jit / passes / tensorexpr_fuser.h

#pragma once

#include <torch/csrc/Export.h>
#include <torch/csrc/jit/ir/ir.h>
#include <memory>

namespace torch {
namespace jit {

struct Graph;

// Run TensorExpressions-based fuser.
// If add_composed_op is true, creates a single operation that
// performs both the runtime check that types align
// and then the dispatch to the kernel/unoptimized graph
TORCH_API void FuseTensorExprs(
    std::shared_ptr<Graph>& graph,
    size_t min_group_size = 2,
    bool add_composed_op = false,
    bool fuse_to_dynamic_shapes = false);

TORCH_API void setTensorExprFuserEnabled(bool val);
TORCH_API bool tensorExprFuserEnabled();
TORCH_API void setTensorExprDynamicShapeFusionEnabled(bool val);
TORCH_API bool tensorExprDynamicShapeFusionEnabled();
TORCH_API bool setTexprReductionsEnabled(bool value);
TORCH_API bool texprReductionsEnabled();

TORCH_API void RemoveProfileNodesAndSpecializeTypes(
    std::shared_ptr<Graph>& graph);
TORCH_API bool hasTensorTypeSpecialization(Value* v);
TORCH_API void RemoveTensorTypeSpecializations(std::shared_ptr<Graph>& graph);
TORCH_API void removeTensorTypeSpecializations(Block* block);

using tensor_type_converter_t =
    c10::function_ref<TensorTypePtr(const TensorTypePtr& t)>;

// inserts a TypeCheck pattern
//
// around the guarded node that has a Subgraph attribute, this inserts a pattern
//
//   if TypeCheck(...):
//     guarded_node
//   else:
//     FallbackGraph(...)
//
// The TypeCheck includes the types of all Tensor inputs to the guarded_node,
// as processed by the type_converter, a lambda
// TensorTypePtr(const TensorTypePtr& t). This allows to erase irrelevant
// aspects of the type.
//
// The Fallback graph will have the same subgraph as the guarded node (with the
// expectation that the guarded_node's subgraph will then be optimized.
TORCH_API void insertTypeGuard(
    Node* guarded_node,
    tensor_type_converter_t type_converter,
    c10::Symbol kind);

TORCH_API bool usedOnlyInSize(Value* v);
TORCH_API Value* broadcastSizes(at::ArrayRef<Value*> sizes, AliasDb* db);

namespace tensorexpr {
TORCH_API bool isSupported(Node* node);

/// Get the modifiable custom operator set object.
///
/// For static shapes, if a custom operator has been added to the custom
/// operator set, it will be pulled into the NNC fusion group. But it doesn't
/// work with dynamic shapes unless explicitly register the shape function via
/// `torch::jit::RegisterShapeComputeGraphForSchema` for the custom operator.
///
/// @return Reference of the custome operator set
///
TORCH_API OperatorSet& getCustomOperatorSet();
} // namespace tensorexpr
} // namespace jit
} // namespace torch