Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torch   python

Repository URL to install this package:

Version: 2.0.1+cpu 

/ include / torch / csrc / jit / passes / utils / op_registry.h

#pragma once

#include <torch/csrc/Export.h>
#include <torch/csrc/jit/ir/ir.h>
#include <memory>

namespace torch {
namespace jit {
// Moved from shape_analysis.cpp

// Requirements:
//   dims           : preserved from the first argument
//   scalar type    : preserved from the first argument (doesn't have to
//                    match other arguments)
//   device         : always matching and preserved
//   tensor inputs  : *
//   tensor outputs : 1
// NB: those ops (with slight adjustments) are good candidates for restarts.
//     Knowing the type and device of weights or biases is usually enough to
//     infer the output type.
std::shared_ptr<OperatorSet> nn_ops_first_input_preserving();

// Requirements:
//   dims           : Changed from first argument
//   scalar type    : preserved from the first argument
//   device         : always matching and preserved
//   tensor inputs  : 1
//   tensor outputs : 1
std::shared_ptr<OperatorSet> ops_one_tensor_in_shape_transform();
} // namespace jit
} // namespace torch