#pragma once
#include <ATen/core/jit_type.h>
#include <ATen/core/stack.h>
#include <c10/util/hash.h>
#include <c10/util/irange.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/ir/ir.h>
#include <iostream>
#include <vector>
C10_CLANG_DIAGNOSTIC_PUSH()
#if C10_CLANG_HAS_WARNING("-Wshorten-64-to-32")
C10_CLANG_DIAGNOSTIC_IGNORE("-Wshorten-64-to-32")
#endif
namespace torch {
namespace jit {
// GraphExecutor creates specializations of Graphs for different
// dimensionalitities and types of inputs.
struct ArgumentInfo {
friend struct ArgumentSpec;
using plain_data_type = uint64_t;
bool defined() const {
return defined_;
}
at::Device device() const {
return at::Device(DeviceType(dev_type_), device_);
}
// XXX: It is guaranteed that this will return false when called on non-tensor
// arguments
bool requires_grad() const {
return requires_grad_;
}
int dim() const {
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
return dim_;
}
at::ScalarType type() const {
return at::ScalarType(type_);
}
TypePtr toType() const {
if (!defined())
return TensorType::get();
return TensorType::create(
type(), device(), c10::optional<size_t>(dim()), requires_grad());
}
operator TypePtr() const {
return toType();
}
private:
unsigned defined_ : 1;
unsigned requires_grad_ : 1;
unsigned : 5;
unsigned dim_ : 8;
unsigned device_ : 8;
unsigned type_ : 8;
unsigned dev_type_ : 16;
unsigned : 16;
};
static_assert(
std::is_standard_layout<ArgumentInfo>::value,
"ArgumentInfo is to be a POD struct");
static_assert(
sizeof(ArgumentInfo) == sizeof(ArgumentInfo::plain_data_type),
"ArgumentInfo is expected to be a 32-bit struct");
struct ArgumentSpec {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
ArgumentSpec(size_t num_flat_tensor_inputs, size_t num_flat_optional_inputs) {
hash_code =
c10::hash_combine(num_flat_tensor_inputs, num_flat_optional_inputs);
tensor_args.reserve(num_flat_tensor_inputs);
optional_presence.reserve(num_flat_optional_inputs);
}
void addOptional(const IValue& input) {
bool is_present = !input.isNone();
optional_presence.push_back(is_present);
hash_code = c10::hash_combine(hash_code, is_present);
}
void addTensor(const IValue& input, bool with_grad) {
AT_ASSERT(input.isTensor(), "Expected Tensor but found ", input.tagKind());
tensor_args.emplace_back();
auto& arg = tensor_args.back();
// Initialize all fields to 0. This is convenient, because e.g.
// requires_grad() can be checked even on tensors AND will make
// padding bits all 0s.
std::memset(&arg, 0, sizeof(ArgumentInfo));
// [argspec refcounting] reinterpret the IValue to avoid having to refcount
// the Tensor microbenchmarks
// https://github.com/zdevito/pytorch/commit/21e7200a0a0fc456bea2f10e95b1781f83933d10
// show overhead in extra refcounting along this path
const at::Tensor* t = reinterpret_cast<const at::Tensor*>(&input);
arg.defined_ = t->defined();
if (arg.defined_) {
arg.requires_grad_ = with_grad && autograd::Variable(*t).requires_grad();
arg.dim_ = t->dim();
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
at::Device device = t->device();
arg.dev_type_ =
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
static_cast<std::underlying_type<DeviceType>::type>(device.type());
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
arg.device_ = device.index();
arg.type_ = static_cast<unsigned>(t->scalar_type());
}
combineHash(arg);
}
void combineHash(const ArgumentInfo& arg) {
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
ArgumentInfo::plain_data_type arg_data;
std::memcpy(&arg_data, &arg, sizeof(ArgumentInfo));
hash_code = c10::hash_combine(hash_code, arg_data);
}
// equality is fast: check ninputs, and then check the raw array data,
// there are no size/stride indirections
// hopefully std::vector<bool> has fast equality
bool operator==(const ArgumentSpec& spec) const {
if (optional_presence != spec.optional_presence) {
return false;
}
if (tensor_args.size() != spec.tensor_args.size())
return false;
// NB: we need to break out early when there are no elements, because
// passing a nullptr to memcmp is UB.
if (tensor_args.empty())
return true;
return std::memcmp(
tensor_args.data(),
spec.tensor_args.data(),
tensor_args.size() * sizeof(ArgumentInfo)) == 0;
}
bool operator!=(const ArgumentSpec& spec) const {
return !(*this == spec);
}
size_t numTensors() const {
return tensor_args.size();
}
const ArgumentInfo& tensorAt(size_t i) const {
return tensor_args[i];
}
size_t numOptionals() const {
return optional_presence.size();
}
bool isPresent(size_t i) const {
return optional_presence[i];
}
size_t hashCode() const {
return hash_code;
}
private:
size_t hash_code; // precomputed on construction
std::vector<ArgumentInfo> tensor_args;
std::vector<bool> optional_presence;
};
namespace {
static constexpr size_t ARG_SPEC_DEPTH_LIMIT = 128;
}
// ArgumentSpecCreator takes an initial graph and comes up with a set
// of simple instructions to compute the ArgumentSpec given a set of
// input tensors.
struct TORCH_API ArgumentSpecCreator {
// instructs acts on a stack of a list of input IValues
// at the beginning the stack contains a single list of the inputs to the
// function the ENTER_ instructs descend into subobjects and push new lists
// onto the stack
enum Inst : char {
ENTER_TUPLE, // consume a tuple ivalue from the top-most list, and push the
// list of its elements onto the stack as a new list
ENTER_OBJECT, // same as ENTER_TUPLE, but the input is a class
LEAVE, // pop the top-most list from the stack
SKIP, // consume an element from the top-most list, and discard
SPECIALIZE_OPTIONAL_TENSOR, // consume a optional tensor for the top-most
// list, and add it to the ArgSpec key being
// created
SPECIALIZE_TENSOR, // consume a tensor for the top-most
// list, and add it to the ArgSpec key being created
SPECIALIZE_OPTIONAL,
// consume a nontensor optional from the top-most list,
// and add it to the ArgSpec key being created
};
ArgumentSpecCreator(Graph& graph);
ArgumentSpec create(bool with_grad, const Stack& stack) const;
void specializeTypes(Graph& g, const ArgumentSpec& spec) const;
void dump() const;
using WrittenSlots = std::unordered_set<std::string>;
private:
void scan(
const TypePtr& typ,
size_t depth,
const WrittenSlots& written_slots);
size_t num_inputs_;
size_t num_tensors_ = 0;
size_t num_optionals_ = 0;
std::vector<Inst> instructions_;
};
// CompleteArgumentSpec represents one particular specialization.
// It is designed so that it can be created, hashed, and compared quickly
// since it is used along the hot-path of the JIT to check if the code
// we have created is valid for the given inputs.
// COmpleteArgumentInfoPOD is only used internally in CompleteArgumentSpec
// API users should use ArgumentInfo
struct CompleteArgumentInfoPOD {
// total size is 64-bit
unsigned is_tensor : 8; // all other fields are invalid if this is false
unsigned type : 8; // scalar type
unsigned defined : 1;
unsigned requires_grad : 1;
signed device : 14;
unsigned dev_type : 16;
unsigned
total_dims : 16; // all TensorInfoPODs are in CompleteArgumentSpec's
// tensor_info() array. total_dims is the total number of
// dimensions seen so far in all previous members of
// tensor_info(), including this tensor 2*total_dims
// becomes the offset into the sizes_strides list for the
// _next_ tensor in the tensor_info array for tensor 0,
// the offset is always 0
};
static_assert(
sizeof(CompleteArgumentInfoPOD) == sizeof(int64_t),
"CompleteArgumentInfoPOD must be 64-bit struct for CompleteArgumentSpec encoding to work");
struct CompleteArgumentInfo;
struct CompleteArgumentSpec {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-member-init)
CompleteArgumentSpec(bool with_grad, at::ArrayRef<IValue> inputs)
: hash_code(0), ninputs(inputs.size()) {
int32_t all_dims = 0;
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
const int32_t num_inputs = inputs.size();
for (const auto i : c10::irange(num_inputs)) {
if (!inputs[i].isTensor())
continue;
auto& tensor = inputs[i].toTensor();
all_dims += tensor.defined() ? tensor.ndimension() : 0;
}
// allocate enough room for all TensorPODs and dimensions
data.resize(ninputs + all_dims * 2);
// and reinterpret our data array as these structs
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
auto* pods = reinterpret_cast<CompleteArgumentInfoPOD*>(data.data());
int64_t* next_dim = sizes_strides();
int32_t total_dims = 0;
for (const auto i : c10::irange(num_inputs)) {
auto& pod = pods[i];
pod.is_tensor = static_cast<uint32_t>(inputs[i].isTensor());
if (pod.is_tensor) {
at::Tensor t = inputs[i].toTensor();
pod.defined = t.defined();
if (pod.defined) {
pod.type = static_cast<int>(t.scalar_type());
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
at::Device device = t.device();
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
pod.dev_type = static_cast<std::underlying_type<DeviceType>::type>(
device.type());
// NOLINTNEXTLINE(bugprone-signed-char-misuse)
pod.device = device.index();
pod.requires_grad = with_grad && t.requires_grad();
total_dims += t.ndimension();
auto sizes = t.sizes();
std::copy(sizes.begin(), sizes.end(), next_dim);
next_dim += sizes.size();
auto strides = t.strides();
std::copy(strides.begin(), strides.end(), next_dim);
next_dim += strides.size();
}
}
// each POD has a running tally of all dimensions including its own
TORCH_CHECK(
total_dims < std::numeric_limits<uint16_t>::max(),
"The number of dims cannot be packed into CompleteArgumentSpec:",
total_dims);
pod.total_dims = total_dims;
}
// we precompute the hash_code to minimize the time inside of hash
// table operations where we may need to hold a compiler cache lock.
hash_code = c10::hash_combine(0, ninputs);
for (auto d : data) {
hash_code = c10::hash_combine(hash_code, d);
}
}
// equality is fast: check ninputs, and then check the raw array data,
// there are no size/stride indirections
bool operator==(const CompleteArgumentSpec& spec) const {
return ninputs == spec.ninputs && data == spec.data;
}
bool operator!=(const CompleteArgumentSpec& spec) const {
return !(*this == spec);
}
friend struct CompleteArgumentInfo;
CompleteArgumentInfo at(size_t i) const;
size_t size() const {
return ninputs;
}
size_t hashCode() const {
return hash_code;
}
private:
ArrayRef<CompleteArgumentInfoPOD> tensor_info() const {
return ArrayRef<CompleteArgumentInfoPOD>(
reinterpret_cast<const CompleteArgumentInfoPOD*>(data.data()), ninputs);
}
// the start of the sizes_strides information, which comes after the
// CompleteArgumentInfoPOD list.
const int64_t* sizes_strides() const {
return data.data() + ninputs;
}
int64_t* sizes_strides() {
return data.data() + ninputs;
}
size_t hash_code; // precomputed on construction
size_t ninputs;
// layout is ninputs of TensorPOD (each 64-bit) followed by their size and
// stride info for 3 tensors:
// [t0POD][t1POD][t2POD]...
// [t0 sizes][t0 strides][t1 sizes][t1 strides][t2 sizes][t2 strides]
std::vector<int64_t> data;
};
// public view of compressed CompleteArgumentInfo
struct CompleteArgumentInfo {
CompleteArgumentInfo(const CompleteArgumentSpec& spec, const int i)
: spec(spec), i(i) {}
bool isTensor() const {
return pod(i).is_tensor;
}
at::ScalarType type() const {
return at::ScalarType(pod(i).type);
}
bool defined() const {
return pod(i).defined;
}
bool requires_grad() const {
return pod(i).requires_grad;
}
at::Device device() const {
return at::Device(
DeviceType(pod(i).dev_type),
static_cast<c10::DeviceIndex>(pod(i).device));
}
int ndimension() const {
// See [valid range], it is always valid to ask for offset for (i + 1)
return (sizes_strides_offset(i + 1) - sizes_strides_offset(i)) / 2;
}
at::IntArrayRef sizes() const {
return at::IntArrayRef(
spec.sizes_strides() + sizes_strides_offset(i), ndimension());
}
at::IntArrayRef strides() const {
int ndim = ndimension();
return at::IntArrayRef(
spec.sizes_strides() + sizes_strides_offset(i) + ndim, ndim);
}
operator TypePtr() const {
if (!defined())
return TensorType::get();
return TensorType::create(
type(),
device(),
c10::VaryingShape<int64_t>{sizes()},
c10::VaryingShape<int64_t>{strides()},
requires_grad());
}
private:
// offsetinto sizes_strides() array where the sizes start for tensor j
// [valid range] valid range is [0, ninputs]
// (i.e. you can ask for the offset at ninputs, which would be the offset of
// the next tensor if it existed)
int sizes_strides_offset(int j) const {
if (j == 0)
return 0;
// NOLINTNEXTLINE(cppcoreguidelines-narrowing-conversions,bugprone-narrowing-conversions)
return 2 * pod(j - 1).total_dims;
}
const CompleteArgumentInfoPOD& pod(int j) const {
return spec.tensor_info().at(j);
}
const CompleteArgumentSpec& spec;
const int i;
};
inline std::ostream& operator<<(std::ostream& out, const ArgumentInfo& info) {
if (!info.defined()) {
return out << "<undefined>";
}
out << "Tensor(device=" << info.device() << ", type=" << toString(info.type())
<< ", requires_grad=" << info.requires_grad() << ", dims=" << info.dim()
<< ")";
return out;
}
inline std::ostream& operator<<(std::ostream& out, const ArgumentSpec& spec) {
out << "{";
for (const auto i : c10::irange(spec.numTensors())) {
if (i > 0)
out << ", ";
out << spec.tensorAt(i);
}
out << "; ";
for (const auto i : c10::irange(spec.numOptionals())) {
if (i > 0)
out << ", ";
out << spec.isPresent(i);
}
out << "}";
return out;
}
inline std::ostream& operator<<(
std::ostream& out,
const CompleteArgumentInfo& info) {
if (!info.defined()) {
return out << "<undefined>";
}
out << "Tensor(device=" << info.device() << ", type=" << toString(info.type())
<< ", requires_grad=" << info.requires_grad()
<< ", sizes=" << info.sizes() << ", strides=" << info.strides() << ")";
return out;
}
inline std::ostream& operator<<(
std::ostream& out,
const CompleteArgumentSpec& spec) {
out << "{";
for (const auto i : c10::irange(spec.size())) {
if (i > 0)
out << ", ";
out << spec.at(i);
}
out << "}";
return out;
}
inline CompleteArgumentInfo CompleteArgumentSpec::at(size_t i) const {
return CompleteArgumentInfo(*this, i);
}
inline c10::optional<int8_t> convertOptional(
c10::optional<c10::ScalarType> const& from) {
return (from) ? c10::optional<int8_t>(static_cast<int8_t>(*from))
: c10::optional<int8_t>{};
}
} // namespace jit
} // namespace torch
namespace std {
template <typename T>
struct hash<c10::VaryingShape<T>> {
size_t operator()(const c10::VaryingShape<T>& vs) const {
return c10::get_hash(
vs.size(),
vs.size() ? vs.sizes().value() : std::vector<c10::optional<T>>());
}
};
template <>
struct hash<c10::TensorType> {
size_t operator()(const c10::TensorType& ptt) const {
return c10::get_hash<
c10::optional<int8_t>,
c10::VaryingShape<int64_t>,
c10::VaryingShape<int64_t>,
c10::optional<bool>>(
torch::jit::convertOptional(ptt.scalarType()),
ptt.sizes(),
ptt.strides(),
ptt.requiresGrad());
}
};
template <>
struct hash<torch::jit::ArgumentSpec> {
size_t operator()(const torch::jit::ArgumentSpec& spec) const {
return spec.hashCode();
}
};
template <>
struct hash<torch::jit::CompleteArgumentSpec> {
size_t operator()(const torch::jit::CompleteArgumentSpec& spec) const {
return spec.hashCode();
}
};
} // namespace std
C10_CLANG_DIAGNOSTIC_POP()