Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torch   python

Repository URL to install this package:

Version: 2.0.1+cpu 

/ include / torch / csrc / jit / serialization / export_bytecode.h

#pragma once

#include <tuple>
#include <unordered_map>

#include <ATen/core/function_schema.h>
#include <ATen/core/ivalue.h>
#include <ATen/core/jit_type.h>
#include <ATen/core/qualified_name.h>
#include <torch/csrc/jit/backends/backend_debug_handler.h>
#include <torch/csrc/jit/mobile/function.h>
#include <torch/csrc/jit/mobile/module.h>
#include <torch/csrc/jit/runtime/interpreter.h>
#include <torch/csrc/jit/serialization/type_name_uniquer.h>

namespace torch {
namespace jit {

struct TORCH_API CompilationOptions {
  bool incl_interface_call = false;
  bool enable_default_value_for_unspecified_arg = false;
  bool enable_default_args_before_out_args = true;
  bool enable_emit_promoted_ops = true;
  int model_version = caffe2::serialize::kProducedBytecodeVersion;
};

TORCH_API mobile::Module jitModuleToMobile(
    const Module& module,
    const CompilationOptions& options);

mobile::Code compileGraphToMobileCode(
    const std::string& name,
    const std::shared_ptr<Graph>& graph,
    const CompilationOptions& compilation_options,
    BackendDebugInfoRecorder& debug_info_recorder);

TORCH_API std::unique_ptr<mobile::Function> convertJitFunctionToMobileFunction(
    const GraphFunction& function,
    const CompilationOptions& options);

TORCH_API IValue convertMobileFunctionToCodeTable(
    const mobile::Function& func,
    const CompilationOptions& compilation_options);

} // namespace jit
} // namespace torch