#pragma once
#include <torch/csrc/jit/ir/ir.h>
namespace torch {
namespace jit {
namespace tensorexpr {
// Optimize aten::cat ops in the given subgraph.
//
// Moving users of cat to its inputs.
// Cat ops get lowered into multiple loops, one per input. When the result
// of cat is used by some other op, it results in a situation where inlining
// of cat does not happen. This in turn results in intermediate buffers
// being created for the result of cat, since it is not inlined.
//
// For example, consider the following graph:
// graph(%x : Float(10, strides=[1], device=cpu),
// %y : Float(20, strides=[1], device=cpu)):
// %dim : int = prim::Constant[value=0]()
// %xy_list : Tensor[] = prim::ListConstruct(%x, %y)
// %cat : Float(60, strides=[1], device=cpu) = aten::cat(%xy_list, %dim)
// %5 : Float(60, strides=[1], device=cpu) = aten::log(%cat)
// return (%5))IR";
//
// This will get lowered into:
// Allocate(aten_cat);
// for (...)
// aten_cat[...] = x[...]
// for (...)
// aten_cat[...] = y[...]
// for (...)
// aten_log[...] = log(aten_cat[...])
// Free(aten_cat);
// Note that aten_cat is not inlined into aten_log and it results in
// an intermediate buffer allocation as well.
//
// Optimization:
// We move the ops that use the result of `cat` into its inputs whenever
// possible.
//
// The graph above will be transformed to:
// graph(%x : Float(10, strides=[1], device=cpu),
// %y : Float(20, strides=[1], device=cpu)):
// %3 : int = prim::Constant[value=0]()
// %7 : Float(10, strides=[1], device=cpu) = aten::log(%x)
// %8 : Float(20, strides=[1], device=cpu) = aten::log(%y)
// %9 : Tensor[] = prim::ListConstruct(%7, %8)
// %10 : Float(60, strides=[1], device=cpu) = aten::cat(%9, %3)
// return (%10)
//
// This will get lowered into:
// for (...)
// aten_cat[...] = log(x[...])
// for (...)
// aten_cat[...] = log(y[...])
// aten_cat is the output buffer here.
bool OptimizeCat(const std::shared_ptr<Graph>& graph);
TORCH_API void annotateInputShapes(
const std::shared_ptr<Graph>& graph,
const std::vector<c10::optional<at::Tensor>>& example_inputs);
TORCH_API std::shared_ptr<Graph> removeUnusedSelfArgument(
const std::shared_ptr<Graph>& graph);
TORCH_API std::shared_ptr<Graph> removeGraphOutput(
const std::shared_ptr<Graph>& graph,
size_t idx);
TORCH_API std::shared_ptr<Graph> replaceListOutputWithTuple(
const std::shared_ptr<Graph>& graph);
// Perform \p ITERS rounds of "trimming" for the given \p GRAPH.
//
// Trimming means that we try to remove a small portion of the graph while
// keeping it valid. This is useful for debugging when we try to find a minimal
// example reproducing the issue at hand. When ITERS is 0, the graph remains
// unchanged, when ITERS is a big number, the graph usually becomes empty.
TORCH_API std::shared_ptr<Graph> trimGraph(
const std::shared_ptr<Graph>& graph,
int64_t iters);
// Scan all values in the given graph and replace each dimension with a size Xi
// present in \p SIZES with a symbolic shape Yi. Return a vector of symbol
// values [Y0, Y1, .., Yn].
//
// For example:
// Input:
// graph(%x : Float(10, 20, 30, 40)):
// %y : Float(10, 20, 30, 40) = aten::relu(%x)
// return %y
//
// If we run makeShapesSymbolic(graph, {20, 40}), then we'll get:
//
// graph(%x : Float(10, SS(-3), 30, SS(-5))):
// %y : Float(10, SS(-3), 30, SS(-5)) = aten::relu(%x)
// return %y
//
// and get {-3, -5} as the return value.
TORCH_API std::vector<int64_t> makeShapesSymbolic(
std::shared_ptr<Graph>& graph,
const std::vector<int64_t>& sizes);
// Inspect the graph and report whether it can be converted to TE IR.
// TODO: add error reporting for graphs that can't be converted.
TORCH_API bool isGraphCompilable(const std::shared_ptr<Graph>& graph);
// Examine the graph and (hackily) fill in missing tensor type info, such as
// scalar type, device, and strides. Ideally, this should be done by a proper
// dtype/device/shape propagation passes, but until they are ready we can use
// this, not always correct, workaround pass.
TORCH_API void fixupMissingShapeInfo(const std::shared_ptr<Graph>& graph);
} // namespace tensorexpr
} // namespace jit
} // namespace torch