Why Gemfury? Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torch   python

Repository URL to install this package:

Version: 2.0.1+cpu 

/ include / torch / csrc / profiler / util.h

#pragma once

#include <cstddef>
#include <cstdint>
#include <list>
#include <string>
#include <unordered_map>
#include <vector>

#include <ATen/record_function.h>
#include <c10/macros/Macros.h>
#include <c10/util/Optional.h>
#include <c10/util/hash.h>
#include <torch/csrc/Export.h>
#include <torch/csrc/jit/frontend/source_range.h>

#ifndef _WIN32
#include <ctime>
#endif
#if defined(C10_IOS) && defined(C10_MOBILE)
#include <sys/time.h> // for gettimeofday()
#endif

#if defined(__i386__) || defined(__x86_64__) || defined(__amd64__)
#define C10_RDTSC
#if defined(_MSC_VER)
#include <intrin.h>
#elif defined(__CUDACC__) || defined(__HIPCC__)
#undef C10_RDTSC
#elif defined(__clang__)
// `__rdtsc` is available by default.
// NB: This has to be first, because Clang will also define `__GNUC__`
#elif defined(__GNUC__)
#include <x86intrin.h>
#else
#undef C10_RDTSC
#endif
#endif

// TODO: replace with pytorch/rfcs#43 when it is ready.
#define SOFT_ASSERT(cond, ...)                         \
  [&]() -> bool {                                      \
    if (C10_UNLIKELY(!(cond))) {                       \
      torch::profiler::impl::logSoftAssert(            \
          __func__,                                    \
          __FILE__,                                    \
          static_cast<uint32_t>(__LINE__),             \
          #cond,                                       \
          ::c10::str(__VA_ARGS__));                    \
      if (torch::profiler::impl::softAssertRaises()) { \
        TORCH_INTERNAL_ASSERT(cond, __VA_ARGS__);      \
      } else {                                         \
        TORCH_WARN(__VA_ARGS__);                       \
      }                                                \
      return false;                                    \
    }                                                  \
    return true;                                       \
  }()

namespace torch {
namespace profiler {
namespace impl {
TORCH_API bool softAssertRaises();
TORCH_API void setSoftAssertRaises(c10::optional<bool> value);
TORCH_API void logSoftAssert(
    const char* func,
    const char* file,
    uint32_t line,
    const char* cond,
    const char* args);
TORCH_API inline void logSoftAssert(
    const char* func,
    const char* file,
    uint32_t line,
    const char* cond,
    ::c10::detail::CompileTimeEmptyString args) {
  logSoftAssert(func, file, line, cond, (const char*)args);
}
TORCH_API void logSoftAssert(
    const char* func,
    const char* file,
    uint32_t line,
    const char* cond,
    const std::string& args);

using time_t = int64_t;
using steady_clock_t = std::conditional<
    std::chrono::high_resolution_clock::is_steady,
    std::chrono::high_resolution_clock,
    std::chrono::steady_clock>::type;

inline time_t getTimeSinceEpoch() {
  auto now = std::chrono::system_clock::now().time_since_epoch();
  return std::chrono::duration_cast<std::chrono::nanoseconds>(now).count();
}

inline time_t getTime(bool allow_monotonic = false) {
#if defined(C10_IOS) && defined(C10_MOBILE)
  // clock_gettime is only available on iOS 10.0 or newer. Unlike OS X, iOS
  // can't rely on CLOCK_REALTIME, as it is defined no matter if clock_gettime
  // is implemented or not
  struct timeval now;
  gettimeofday(&now, NULL);
  return static_cast<time_t>(now.tv_sec) * 1000000000 +
      static_cast<time_t>(now.tv_usec) * 1000;
#elif defined(_WIN32) || defined(__MACH__)
  return std::chrono::duration_cast<std::chrono::nanoseconds>(
             steady_clock_t::now().time_since_epoch())
      .count();
#else
  // clock_gettime is *much* faster than std::chrono implementation on Linux
  struct timespec t {};
  auto mode = CLOCK_REALTIME;
  if (allow_monotonic) {
    mode = CLOCK_MONOTONIC;
  }
  clock_gettime(mode, &t);
  return static_cast<time_t>(t.tv_sec) * 1000000000 +
      static_cast<time_t>(t.tv_nsec);
#endif
}

// We often do not need to capture true wall times. If a fast mechanism such
// as TSC is available we can use that instead and convert back to epoch time
// during post processing. This greatly reduce the clock's contribution to
// profiling.
//   http://btorpey.github.io/blog/2014/02/18/clock-sources-in-linux/
//   https://quick-bench.com/q/r8opkkGZSJMu9wM_XTbDouq-0Io
// TODO: We should use
// `https://github.com/google/benchmark/blob/main/src/cycleclock.h`
inline auto getApproximateTime() {
#if defined(C10_RDTSC)
  return static_cast<uint64_t>(__rdtsc());
#else
  return getTime();
#endif
}

using approx_time_t = decltype(getApproximateTime());
static_assert(
    std::is_same<approx_time_t, int64_t>::value ||
        std::is_same<approx_time_t, uint64_t>::value,
    "Expected either int64_t (`getTime`) or uint64_t (some TSC reads).");

// Convert `getCount` results to Nanoseconds since unix epoch.
class ApproximateClockToUnixTimeConverter final {
 public:
  ApproximateClockToUnixTimeConverter();
  std::function<time_t(approx_time_t)> makeConverter();

  struct UnixAndApproximateTimePair {
    time_t t_;
    approx_time_t approx_t_;
  };
  static UnixAndApproximateTimePair measurePair();

 private:
  static constexpr size_t replicates = 1001;
  using time_pairs = std::array<UnixAndApproximateTimePair, replicates>;
  time_pairs measurePairs();

  time_pairs start_times_;
};

std::string getNvtxStr(
    const char* name,
    int64_t sequence_nr,
    const std::vector<std::vector<int64_t>>& shapes,
    at::RecordFunctionHandle op_id = 0,
    const std::list<std::pair<at::RecordFunctionHandle, int>>& input_op_ids =
        {});

struct TORCH_API FileLineFunc {
  std::string filename;
  size_t line;
  std::string funcname;
};

TORCH_API std::vector<FileLineFunc> prepareCallstack(
    const std::vector<jit::StackEntry>& cs);
TORCH_API std::vector<std::string> callstackStr(
    const std::vector<FileLineFunc>& cs);
TORCH_API std::string stacksToStr(
    const std::vector<std::string>& stacks,
    const char* delim);
TORCH_API std::vector<std::vector<int64_t>> inputSizes(
    const at::RecordFunction& fn,
    const bool flatten_list_enabled = false);
TORCH_API std::string shapesToStr(
    const std::vector<std::vector<int64_t>>& shapes);
TORCH_API std::string dtypesToStr(const std::vector<std::string>& types);
TORCH_API std::string inputOpIdsToStr(
    const std::list<std::pair<at::RecordFunctionHandle, int>>& input_op_ids);
TORCH_API std::vector<std::string> inputTypes(const at::RecordFunction& fn);

std::unordered_map<std::string, c10::IValue> TORCH_API
saveExtraArgs(const at::RecordFunction& fn);

uint64_t TORCH_API computeFlops(
    const std::string& op_name,
    const std::unordered_map<std::string, c10::IValue>& extra_args);

template <typename T>
class TORCH_API GlobalStateManager {
 public:
  static GlobalStateManager& singleton() {
    static GlobalStateManager singleton_;
    return singleton_;
  }

  static void push(std::shared_ptr<T>&& state) {
    if (singleton().state_) {
      LOG(WARNING) << "GlobalStatePtr already exists!";
    } else {
      singleton().state_ = std::move(state);
    }
  }

  static auto* get() {
    return singleton().state_.get();
  }

  static std::shared_ptr<T> pop() {
    auto out = singleton().state_;
    singleton().state_.reset();
    return out;
  }

 private:
  GlobalStateManager() = default;

  std::shared_ptr<T> state_;
};

struct HashCombine {
  template <typename T0, typename T1>
  size_t operator()(const std::pair<T0, T1>& i) {
    return c10::get_hash((*this)(i.first), (*this)(i.second));
  }

  template <typename... Args>
  size_t operator()(const std::tuple<Args...>& i) {
    return c10::get_hash(i);
  }

  template <typename T>
  size_t operator()(const T& i) {
    return c10::get_hash(i);
  }
};

} // namespace impl
} // namespace profiler
} // namespace torch

namespace torch {
namespace autograd {
namespace profiler {
using torch::profiler::impl::computeFlops;
using torch::profiler::impl::getTime;
} // namespace profiler
} // namespace autograd
} // namespace torch