#pragma once
#include <torch/csrc/python_headers.h>
#include <ATen/core/Tensor.h>
#include <ATen/core/jit_type_base.h>
#include <c10/util/irange.h>
#include <c10/util/variant.h>
#include <pybind11/pybind11.h>
#include <pybind11/stl.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/utils/tensor_memoryformats.h>
#include <stdexcept>
#include <utility>
namespace py = pybind11;
// This makes intrusive_ptr to be available as a custom pybind11 holder type,
// see
// https://pybind11.readthedocs.io/en/stable/advanced/smart_ptrs.html#custom-smart-pointers
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::intrusive_ptr<T>, true);
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonOrSharedTypePtr<T>);
PYBIND11_DECLARE_HOLDER_TYPE(T, c10::SingletonTypePtr<T>, true);
namespace pybind11 {
namespace detail {
// torch.Tensor <-> at::Tensor conversions (without unwrapping)
template <>
struct TORCH_PYTHON_API type_caster<at::Tensor> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(at::Tensor, _("torch.Tensor"));
bool load(handle src, bool);
static handle cast(
const at::Tensor& src,
return_value_policy /* policy */,
handle /* parent */);
};
// torch._StorageBase <-> at::Storage
template <>
struct type_caster<at::Storage> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(at::Storage, _("torch.StorageBase"));
bool load(handle src, bool) {
PyObject* obj = src.ptr();
if (torch::isStorage(obj)) {
value = torch::createStorage(obj);
return true;
}
return false;
}
static handle cast(
const at::Storage& src,
return_value_policy /* policy */,
handle /* parent */) {
return handle(torch::createPyObject(src));
}
};
template <>
struct type_caster<at::Generator> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(at::Generator, _("torch.Generator"));
bool load(handle src, bool) {
PyObject* obj = src.ptr();
if (THPGenerator_Check(obj)) {
value = reinterpret_cast<THPGenerator*>(obj)->cdata;
return true;
}
return false;
}
static handle cast(
const at::Generator& src,
return_value_policy /* policy */,
handle /* parent */) {
return handle(THPGenerator_Wrap(src));
}
};
template <>
struct TORCH_PYTHON_API type_caster<at::IntArrayRef> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(at::IntArrayRef, _("Tuple[int, ...]"));
bool load(handle src, bool);
static handle cast(
at::IntArrayRef src,
return_value_policy /* policy */,
handle /* parent */);
private:
std::vector<int64_t> v_value;
};
template <>
struct TORCH_PYTHON_API type_caster<at::SymIntArrayRef> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(at::SymIntArrayRef, _("List[int]"));
bool load(handle src, bool);
static handle cast(
at::SymIntArrayRef src,
return_value_policy /* policy */,
handle /* parent */);
private:
std::vector<c10::SymInt> v_value;
};
template <>
struct TORCH_PYTHON_API type_caster<at::ArrayRef<c10::SymNode>> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(at::ArrayRef<c10::SymNode>, _("List[SymNode]"));
bool load(handle src, bool);
static handle cast(
at::ArrayRef<c10::SymNode> src,
return_value_policy /* policy */,
handle /* parent */);
private:
std::vector<c10::SymNode> v_value;
};
template <>
struct type_caster<at::MemoryFormat> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(at::MemoryFormat, _("torch.memory_format"));
bool load(handle src, bool) {
PyObject* obj = src.ptr();
if (THPMemoryFormat_Check(obj)) {
value = reinterpret_cast<THPMemoryFormat*>(obj)->memory_format;
return true;
}
return false;
}
static handle cast(
at::MemoryFormat src,
return_value_policy /* policy */,
handle /* parent */) {
return handle(torch::utils::getTHPMemoryFormat(src));
}
};
template <>
struct type_caster<at::Device> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(at::Device, _("torch.device"));
// PYBIND11_TYPE_CASTER defines a member field called value. Since at::Device
// cannot be default-initialized, we provide this constructor to explicitly
// initialize that field. The value doesn't matter as it will be overwritten
// after a successful call to load.
type_caster() : value(c10::kCPU) {}
bool load(handle src, bool) {
PyObject* obj = src.ptr();
if (THPDevice_Check(obj)) {
value = reinterpret_cast<THPDevice*>(obj)->device;
return true;
}
return false;
}
static handle cast(
const at::Device& src,
return_value_policy /* policy */,
handle /* parent */) {
return handle(THPDevice_New(src));
}
};
template <>
struct type_caster<c10::DispatchKey>
: public type_caster_base<c10::DispatchKey> {
using base = type_caster_base<c10::DispatchKey>;
c10::DispatchKey tmp;
public:
bool load(handle src, bool convert) {
if (base::load(src, convert)) {
return true;
} else if (py::isinstance(
src, py::module_::import("builtins").attr("str"))) {
tmp = c10::parseDispatchKey(py::cast<std::string>(src));
value = &tmp;
return true;
}
return false;
}
static handle cast(
c10::DispatchKey src,
return_value_policy policy,
handle parent) {
return base::cast(src, policy, parent);
}
};
template <>
struct TORCH_PYTHON_API type_caster<c10::Scalar> {
public:
PYBIND11_TYPE_CASTER(
c10::Scalar,
_("Union[Number, torch.SymInt, torch.SymFloat]"));
bool load(py::handle src, bool);
static py::handle cast(
const c10::Scalar& si,
return_value_policy /* policy */,
handle /* parent */);
};
template <>
struct TORCH_PYTHON_API type_caster<c10::SymInt> {
public:
PYBIND11_TYPE_CASTER(c10::SymInt, _("Union[int, torch.SymInt]"));
bool load(py::handle src, bool);
static py::handle cast(
c10::SymInt si,
return_value_policy /* policy */,
handle /* parent */);
};
template <>
struct TORCH_PYTHON_API type_caster<c10::SymFloat> {
public:
PYBIND11_TYPE_CASTER(c10::SymFloat, _("float"));
bool load(py::handle src, bool);
static py::handle cast(
c10::SymFloat si,
return_value_policy /* policy */,
handle /* parent */);
};
template <typename T>
struct type_caster<c10::complex<T>> {
public:
// NOLINTNEXTLINE(cppcoreguidelines-non-private-member-variables-in-classes)
PYBIND11_TYPE_CASTER(c10::complex<T>, _("complex"));
bool load(handle src, bool) {
PyObject* obj = src.ptr();
// Refered from `THPUtils_unpackComplexDouble`
Py_complex py_complex = PyComplex_AsCComplex(obj);
if (py_complex.real == -1.0 && PyErr_Occurred()) {
return false;
}
// Python's Complex is always double precision.
value = c10::complex<double>(py_complex.real, py_complex.imag);
return true;
}
static handle cast(
const c10::complex<T>& complex,
return_value_policy /* policy */,
handle /* parent */) {
// Python only knows double precision complex.
return handle(PyComplex_FromDoubles(complex.real(), complex.imag()));
}
};
// Pybind11 bindings for our optional and variant types.
// http://pybind11.readthedocs.io/en/stable/advanced/cast/stl.html#c-17-library-containers
template <typename T>
struct type_caster<c10::optional<T>> : optional_caster<c10::optional<T>> {};
template <typename... Ts>
struct C10_MPARK_VISIBILITY_HIDDEN type_caster<c10::variant<Ts...>>
: variant_caster<c10::variant<Ts...>> {};
} // namespace detail
} // namespace pybind11
namespace torch {
namespace impl {
// Use this function if you have a C++ object that is used from both C++
// and Python contexts, and you need its GIL to be released when you
// destruct it in the Python context.
//
// This function is a valid shared_ptr destructor and can be used to
// conveniently allocate a shared_ptr to an object whose destructor will be run
// without the GIL. Pass it as the second argument to shared_ptr, e.g.,
//
// shared_ptr<T>(new T(), destroy_without_gil<T>)
//
// Attaching the GIL release logic to the holder pointer rather than the
// actual destructor of T is helpful when T is Python-agnostic and
// shouldn't refer to the PYthon API.
//
// Note there are limitations to the correctness of code that makes use of this.
// In particular, if a shared_ptr is constructed from C++ code without this
// destructor and then passed to pybind11, pybind11 will happily take ownership
// of the shared_ptr (and be willing to destruct it from a context where it is
// holding the GIL). unique_ptr with a type branded deleter is less prone to
// this problem, because a stock deleter unique_ptr is not convertible with it.
// I plan to mitigate this problem by adding DEBUG-only asserts to the true C++
// destructors that the GIL is not held (using a virtual call to get to the
// Python interpreter); alternately, we could use a virtual call to simply
// ensure we release the GIL in the C++ destructor, however, this is a layering
// violation (why does code that is ostensibly Python agnostic calling into the
// GIL).
//
// Adapted from
// https://github.com/pybind/pybind11/issues/1446#issuecomment-406341510
template <typename T>
inline void destroy_without_gil(T* ptr) {
// Because the ownership of a shared_ptr is diffuse, it's not possible to
// necessarily predict whether or not the last reference to an object will
// be destructed from Python or C++. This means that in the destructor here,
// we don't necessarily know if we actually have the GIL or not; in fact,
// we don't even know if the Python interpreter still exists! Thus, we have
// to test for it before releasing the GIL.
//
// PyGILState_Check is hopefully self explanatory. But Py_IsInitialized or
// _PyIsFinalizing? Both get set at the same time during the Python
// destruction process:
// https://github.com/python/cpython/blob/d92513390a1a0da781bb08c284136f4d7abea36d/Python/pylifecycle.c#L1716-L1717
// so the operant question is whether or not you want to release the GIL after
// finalization has completed (and there is just no Python interpreter).
// Clearly there is no need to release GIL in that state, so we want
// Py_IsInitialized.
if (Py_IsInitialized() && PyGILState_Check()) {
pybind11::gil_scoped_release nogil;
delete ptr;
} else {
delete ptr;
}
}
} // namespace impl
} // namespace torch