#pragma once
// Parse arguments to Python functions implemented in C++
// This is similar to PyArg_ParseTupleAndKeywords(), but specifically handles
// the types relevant to PyTorch and distinguishes between overloaded function
// signatures.
//
// Example:
//
// static PythonArgParser parser({
// "norm(Scalar p, int64_t dim, bool keepdim=False)",
// "norm(Scalar p=2)",
// });
// ParsedArgs<3> parsed_args;
// auto r = parser.parse(args, kwargs, parsed_args);
// if (r.idx == 0) {
// norm(r.scalar(0), r.int64(1), r.bool(0));
// } else {
// norm(r.scalar(0));
// }
//
// We auto-generate most uses of PythonArgParser; the generated files
// are torch/csrc/autograd/generated/python_*.cpp
//
// Some gotchas that you should watch out for:
//
// - Note [Order of overloads matters]
// Order of overloads matters. A set of input arguments may
// bind to multiple argument specs; we will always pick the
// first one in PythonArgParser. However, when you are writing
// overloads in, e.g., native_functions.yaml, you don't have to
// worry about what order you write them, because the code
// generation logic always gives the overloads a canonical
// order, where Tensor overloads come first, before Scalar overloads.
// This logic is in sort_declarations in
// tools/autograd/gen_python_functions.py
//
// - Zero-dim tensors (e.g., torch.tensor(2)) bind to both
// Scalar and Tensor, UNLESS they require grad (in which case
// they only bind to Tensor).
#include <pybind11/pytypes.h>
#include <torch/csrc/python_headers.h>
#include <torch/csrc/Device.h>
#include <torch/csrc/Dtype.h>
#include <torch/csrc/DynamicTypes.h>
#include <torch/csrc/Exceptions.h>
#include <torch/csrc/Generator.h>
#include <torch/csrc/Layout.h>
#include <torch/csrc/MemoryFormat.h>
#include <torch/csrc/QScheme.h>
#include <torch/csrc/Stream.h>
#include <torch/csrc/autograd/python_variable.h>
#include <torch/csrc/autograd/variable.h>
#include <torch/csrc/jit/frontend/tracer.h>
#include <torch/csrc/python_dimname.h>
#include <torch/csrc/tensor/python_tensor.h>
#include <torch/csrc/utils/disable_torch_function.h>
#include <torch/csrc/utils/object_ptr.h>
#include <torch/csrc/utils/pybind.h>
#include <torch/csrc/utils/python_numbers.h>
#include <torch/csrc/utils/python_strings.h>
#include <torch/csrc/utils/python_symnode.h>
#include <torch/csrc/utils/six.h>
#include <ATen/PythonTorchFunctionTLS.h>
#include <ATen/core/Tensor.h>
#include <c10/util/Exception.h>
#include <c10/util/irange.h>
#include <c10/core/SymFloat.h>
#include <c10/core/SymNodeImpl.h>
#include <array>
#include <cstddef>
#include <memory>
#include <sstream>
#include <string>
#include <vector>
inline bool THPUtils_checkScalar(PyObject* obj) {
#ifdef USE_NUMPY
if (torch::utils::is_numpy_scalar(obj)) {
return true;
}
#endif
return PyFloat_Check(obj) || PyLong_Check(obj) || PyComplex_Check(obj) ||
torch::is_symint(py::handle(obj)) || torch::is_symfloat(py::handle(obj));
}
namespace torch {
bool should_allow_numbers_as_tensors(const std::string& name);
enum class ParameterType {
TENSOR,
SCALAR,
INT64,
SYM_INT,
DOUBLE,
COMPLEX,
TENSOR_LIST,
INT_LIST,
GENERATOR,
BOOL,
STORAGE,
PYOBJECT,
SCALARTYPE,
LAYOUT,
MEMORY_FORMAT,
DEVICE,
STREAM,
STRING,
DIMNAME,
DIMNAME_LIST,
QSCHEME,
FLOAT_LIST,
SCALAR_LIST,
SYM_INT_LIST
};
struct FunctionParameter;
struct FunctionSignature;
struct PythonArgs;
// Contains bound Python arguments in declaration order
template <int N>
struct ParsedArgs {
ParsedArgs() : args() {}
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
PyObject* args[N];
};
struct PythonArgParser {
explicit PythonArgParser(
std::vector<std::string> fmts,
bool traceable = false);
// meant only for `torch` functions.
template <int N>
inline PythonArgs parse(
PyObject* self,
PyObject* args,
PyObject* kwargs,
ParsedArgs<N>& dst);
template <int N>
inline PythonArgs parse(PyObject* args, PyObject* kwargs, ParsedArgs<N>& dst);
inline PythonArgs parse(PyObject* self, ParsedArgs<0>& dst);
// Formatted strings of non-hidden signatures
std::vector<std::string> get_signatures() const;
private:
[[noreturn]]
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
void
print_error(
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* parsed_args[]);
void check_deprecated(const FunctionSignature& signature);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
PythonArgs raw_parse(
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* parsed_args[]);
std::vector<FunctionSignature> signatures_;
std::string function_name;
size_t max_args;
bool traceable;
};
struct PYBIND11_EXPORT FunctionSignature {
explicit FunctionSignature(const std::string& fmt, int index);
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
bool parse(
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* dst[],
bool raise_exception);
std::string toString() const;
std::string name;
std::vector<FunctionParameter> params;
std::vector<py::handle> overloaded_args;
size_t min_args;
size_t max_args;
size_t max_pos_args;
int index;
bool hidden;
bool deprecated;
bool disable_torch_function;
};
struct PythonArgs {
PythonArgs(
bool traceable,
const FunctionSignature& signature,
PyObject** args)
: idx(signature.index),
traceable(traceable),
signature(signature),
args(args) {}
int idx;
bool traceable;
const FunctionSignature& signature;
PyObject** args;
inline bool has_torch_function();
inline std::string get_func_name();
inline at::Tensor tensor(int i);
inline c10::optional<at::Tensor> optionalTensor(int i);
inline at::Scalar scalar(int i);
inline at::Scalar scalarWithDefault(int i, const at::Scalar& default_scalar);
inline std::vector<at::Scalar> scalarlist(int i);
inline std::vector<at::Tensor> tensorlist(int i);
inline torch::List<c10::optional<at::Tensor>> list_of_optional_tensors(int i);
template <int N>
inline std::array<at::Tensor, N> tensorlist_n(int i);
inline std::vector<int64_t> intlist(int i);
inline std::vector<c10::SymInt> symintlist(int i);
inline c10::OptionalArray<int64_t> intlistOptional(int i);
inline c10::OptionalArray<c10::SymInt> symintlistOptional(int i);
inline std::vector<int64_t> intlistWithDefault(
int i,
std::vector<int64_t> default_intlist);
inline c10::optional<at::Generator> generator(int i);
inline at::Storage storage(int i);
inline at::Storage storage(
int i,
at::ScalarType& storage_scalar_type,
bool& is_typed_storage);
inline c10::Stream stream(int i);
inline at::ScalarType scalartype(int i);
inline at::ScalarType scalartypeWithDefault(
int i,
at::ScalarType default_scalartype);
inline c10::optional<at::ScalarType> scalartypeOptional(int i);
inline c10::optional<at::Scalar> scalarOptional(int i);
inline c10::optional<int64_t> toInt64Optional(int i);
inline c10::optional<c10::SymInt> toSymIntOptional(int i);
inline c10::optional<bool> toBoolOptional(int i);
inline c10::optional<double> toDoubleOptional(int i);
inline c10::OptionalArray<double> doublelistOptional(int i);
inline std::vector<double> doublelist(int i);
inline std::vector<double> getDoublelist(int i);
inline at::Layout layout(int i);
inline at::Layout layoutWithDefault(int i, at::Layout default_layout);
inline c10::optional<at::Layout> layoutOptional(int i);
inline at::Device device(int i);
inline at::Device deviceWithDefault(int i, const at::Device& default_device);
inline c10::optional<at::Device> deviceOptional(int i);
inline at::Dimname dimname(int i);
inline std::vector<at::Dimname> dimnamelist(int i);
inline c10::optional<std::vector<at::Dimname>> toDimnameListOptional(int i);
inline at::MemoryFormat memoryformat(int i);
inline c10::optional<at::MemoryFormat> memoryformatOptional(int i);
inline at::QScheme toQScheme(int i);
inline std::string string(int i);
inline std::string stringWithDefault(int i, const std::string& default_str);
inline c10::optional<std::string> stringOptional(int i);
inline c10::string_view stringView(int i);
inline c10::string_view stringViewWithDefault(
int i,
const c10::string_view default_str);
inline c10::optional<c10::string_view> stringViewOptional(int i);
inline PyObject* pyobject(int i);
inline int64_t toInt64(int i);
inline c10::SymInt toSymInt(int i);
inline int64_t toInt64WithDefault(int i, int64_t default_int);
inline double toDouble(int i);
inline double toDoubleWithDefault(int i, double default_double);
inline c10::complex<double> toComplex(int i);
inline c10::complex<double> toComplexWithDefault(
int i,
c10::complex<double> default_complex);
inline bool toBool(int i);
inline bool toBoolWithDefault(int i, bool default_bool);
inline bool isNone(int i);
private:
at::Tensor tensor_slow(int i);
at::Scalar scalar_slow(int i);
at::Scalar scalar_slow(PyObject* arg);
};
struct FunctionParameter {
FunctionParameter(const std::string& fmt, bool keyword_only);
bool check(
PyObject* obj,
std::vector<py::handle>& overloaded_args,
int argnum,
int64_t* failed_idx = nullptr);
void set_default_str(const std::string& str);
std::string type_name() const;
ParameterType type_;
bool optional;
bool allow_none;
bool keyword_only;
bool allow_numbers_as_tensors = false;
int size;
std::string name;
// having this as a raw PyObject * will presumably leak it, but these are only
// held by static objects anyway, and Py_Finalize can already be called when
// this is destructed.
PyObject* python_name;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-magic-numbers)
at::SmallVector<PyObject*, 5> numpy_python_names;
at::Scalar default_scalar;
std::vector<int64_t> default_intlist;
std::string default_string;
union {
bool default_bool;
int64_t default_int;
double default_double;
// NOLINTNEXTLINE(cppcoreguidelines-avoid-c-arrays,modernize-avoid-c-arrays)
double default_complex[2]; // see Scalar
at::ScalarType default_scalartype;
at::Layout default_layout;
};
};
template <int N>
inline PythonArgs PythonArgParser::parse(
PyObject* self,
PyObject* args,
PyObject* kwargs,
ParsedArgs<N>& dst) {
if (N < max_args) {
throw ValueError(
"PythonArgParser: dst ParsedArgs buffer does not have enough capacity, expected %d (got %d)",
(int)max_args,
N);
}
return raw_parse(self, args, kwargs, dst.args);
}
template <int N>
inline PythonArgs PythonArgParser::parse(
PyObject* args,
PyObject* kwargs,
ParsedArgs<N>& dst) {
return parse(nullptr, args, kwargs, dst);
}
inline PythonArgs PythonArgParser::parse(PyObject* self, ParsedArgs<0>& dst) {
return parse(self, nullptr, nullptr, dst);
}
inline bool PythonArgs::has_torch_function() {
return !this->signature.overloaded_args.empty() ||
at::impl::torch_function_mode_enabled();
}
inline std::string PythonArgs::get_func_name() {
return signature.name;
}
// TODO: this can return MaybeOwned
inline at::Tensor PythonArgs::tensor(int i) {
if (args[i] && THPVariable_CheckExact(args[i])) {
return THPVariable_Unpack(args[i]);
}
return tensor_slow(i);
}
inline c10::optional<at::Tensor> PythonArgs::optionalTensor(int i) {
at::Tensor t = tensor(i);
// NOLINTNEXTLINE(bugprone-branch-clone)
if (t.defined()) {
return t;
} else {
return c10::nullopt;
}
}
inline at::Scalar PythonArgs::scalar(int i) {
if (!args[i])
return signature.params[i].default_scalar;
return scalar_slow(i);
}
inline std::vector<at::Scalar> PythonArgs::scalarlist(int i) {
if (!args[i])
return std::vector<at::Scalar>();
auto tuple = six::isTuple(args[i]);
THPObjectPtr arg = six::maybeAsTuple(args[i]);
// NOLINTNEXTLINE(bugprone-branch-clone)
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
std::vector<at::Scalar> res(size);
for (const auto idx : c10::irange(size)) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx)
: PyList_GET_ITEM(arg.get(), idx);
res[idx] = scalar_slow(obj);
}
return res;
}
inline at::Scalar PythonArgs::scalarWithDefault(
int i,
const at::Scalar& default_scalar) {
if (!args[i])
return default_scalar;
return scalar_slow(i);
}
inline c10::optional<at::Scalar> PythonArgs::scalarOptional(int i) {
if (!args[i])
return c10::nullopt;
return scalar_slow(i);
}
inline std::vector<at::Tensor> PythonArgs::tensorlist(int i) {
if (!args[i])
return std::vector<at::Tensor>();
auto tuple = six::isTuple(args[i]);
THPObjectPtr arg = six::maybeAsTuple(args[i]);
// NOLINTNEXTLINE(bugprone-branch-clone)
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
std::vector<at::Tensor> res(size);
for (const auto idx : c10::irange(size)) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx)
: PyList_GET_ITEM(arg.get(), idx);
// This is checked by the argument parser so it's safe to cast without
// checking if this is a tensor first
res[idx] = THPVariable_Unpack(obj);
}
return res;
}
inline torch::List<c10::optional<at::Tensor>> PythonArgs::
list_of_optional_tensors(int i) {
if (!args[i])
return torch::List<c10::optional<at::Tensor>>();
auto tuple = six::isTuple(args[i]);
THPObjectPtr arg = six::maybeAsTuple(args[i]);
// NOLINTNEXTLINE(bugprone-branch-clone)
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
torch::List<c10::optional<at::Tensor>> res;
res.reserve(size);
for (const auto idx : c10::irange(size)) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx)
: PyList_GET_ITEM(arg.get(), idx);
// This is checked by the argument parser so it's safe to cast without
// checking if this is a tensor first
res.push_back(THPVariable_Unpack(obj));
}
return res;
}
template <int N>
inline std::array<at::Tensor, N> PythonArgs::tensorlist_n(int i) {
auto res = std::array<at::Tensor, N>();
if (!args[i])
return res;
auto tuple = six::isTuple(args[i]);
THPObjectPtr arg = six::maybeAsTuple(args[i]);
// NOLINTNEXTLINE(bugprone-branch-clone)
auto size = tuple ? PyTuple_GET_SIZE(arg.get()) : PyList_GET_SIZE(arg.get());
if (size != N) {
throw TypeError("expected tuple of %d elements but got %d", N, (int)size);
}
for (const auto idx : c10::irange(size)) {
PyObject* obj = tuple ? PyTuple_GET_ITEM(arg.get(), idx)
: PyList_GET_ITEM(arg.get(), idx);
// This is checked by the argument parser so it's safe to cast without
// checking if this is a tensor first
res[idx] = THPVariable_Unpack(obj);
}
return res;
}
inline std::vector<int64_t> PythonArgs::intlist(int i) {
return intlistWithDefault(i, signature.params[i].default_intlist);
}
inline PyObject* toPyObject(c10::SymInt symint) {
if (symint.is_symbolic()) {
auto r = py::cast(symint).release().ptr();
TORCH_INTERNAL_ASSERT(r);
return r;
} else {
return THPUtils_packInt64(symint.as_int_unchecked());
}
}
inline void throw_intlist_exception(
const torch::PythonArgs* args,
size_t i,
PyObject* obj,
size_t idx) {
throw TypeError(
"%s(): argument '%s' must be %s, but found element of type %s at pos %ld",
args->signature.name.c_str(),
args->signature.params[i].name.c_str(),
args->signature.params[i].type_name().c_str(),
Py_TYPE(obj)->tp_name,
idx + 1);
}
inline std::vector<c10::SymInt> PythonArgs::symintlist(int i) {
if (!args[i]) {
return c10::fmap(signature.params[i].default_intlist, [](int64_t di) {
return c10::SymInt(di);
});
}
const auto size1 = signature.params[i].size;
if (size1 > 0 && THPUtils_checkLong(args[i])) {
return std::vector<c10::SymInt>(
size1, c10::SymInt(THPUtils_unpackIndex(args[i])));
}
if (size1 > 0 && torch::is_symint(py::handle(args[i]))) {
auto si = py::handle(args[i]).cast<c10::SymInt>();
return std::vector<c10::SymInt>(size1, si);
}
PyObject* arg = args[i];
auto tuple = PyTuple_Check(arg);
// NOLINTNEXTLINE(bugprone-branch-clone)
const auto size2 = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
std::vector<c10::SymInt> res;
res.reserve(size2);
for (const auto idx : c10::irange(size2)) {
PyObject* obj =
tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
// Elements of torch.Size are tensors during tracing, and we need to
// record extra information before they are turned into an IntArrayRef
if (traceable && jit::tracer::isTracing() && THPVariable_Check(obj)) {
auto& var = THPVariable_Unpack(obj);
jit::tracer::ArgumentStash::stashIntArrayRefElem(
signature.params[i].name, size2, idx, var);
try {
res.emplace_back(var.item<int64_t>());
continue;
} catch (std::exception& e) {
throw_intlist_exception(this, i, obj, idx);
}
continue;
} else {
// convert tensor to scalar outside of try / catch,
// so that Tensor subclass exceptions will not be caught.
if (THPVariable_Check(obj)) {
auto& var = THPVariable_Unpack(obj);
if (var.numel() != 1 ||
!at::isIntegralType(
var.dtype().toScalarType(), /*include_bool*/ true)) {
throw_intlist_exception(this, i, obj, idx);
}
auto scalar = var.item();
TORCH_CHECK(scalar.isIntegral(/*include bool*/ false));
res.push_back(scalar.toSymInt());
} else {
try {
if (is_symint(py::handle(obj))) {
res.push_back(py::handle(obj).cast<c10::SymInt>());
} else {
res.emplace_back(THPUtils_unpackIndex(obj));
}
} catch (std::exception& e) {
throw_intlist_exception(this, i, obj, idx);
}
}
}
}
return res;
}
inline std::vector<int64_t> PythonArgs::intlistWithDefault(
int i,
std::vector<int64_t> default_intlist) {
if (!args[i])
return default_intlist;
PyObject* arg = args[i];
const auto size1 = signature.params[i].size;
if (size1 > 0 && THPUtils_checkLong(arg)) {
return std::vector<int64_t>(size1, THPUtils_unpackIndex(arg));
}
auto tuple = PyTuple_Check(arg);
// NOLINTNEXTLINE(bugprone-branch-clone)
const auto size2 = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
std::vector<int64_t> res(size2);
for (const auto idx : c10::irange(size2)) {
PyObject* obj =
tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
// Elements of torch.Size are tensors during tracing, and we need to
// record extra information before they are turned into an IntArrayRef
if (traceable && jit::tracer::isTracing() && THPVariable_Check(obj)) {
auto& var = THPVariable_Unpack(obj);
jit::tracer::ArgumentStash::stashIntArrayRefElem(
signature.params[i].name, size2, idx, var);
try {
res[idx] = var.item<int64_t>();
continue;
} catch (std::exception& e) {
throw_intlist_exception(this, i, obj, idx);
}
} else {
// convert tensor to scalar outside of try / catch,
// so that Tensor subclass exceptions will not be caught.
if (THPVariable_Check(obj)) {
auto& var = THPVariable_Unpack(obj);
if (var.numel() != 1 ||
!at::isIntegralType(
var.dtype().toScalarType(), /*include_bool*/ true)) {
throw_intlist_exception(this, i, obj, idx);
}
res[idx] = var.item<int64_t>();
} else {
try {
res[idx] = THPUtils_unpackIndex(obj);
} catch (std::exception& e) {
throw_intlist_exception(this, i, obj, idx);
}
}
}
}
return res;
}
inline c10::OptionalArray<int64_t> PythonArgs::intlistOptional(int i) {
if (!args[i]) {
return {};
}
return intlist(i);
}
inline c10::OptionalArray<c10::SymInt> PythonArgs::symintlistOptional(int i) {
if (!args[i]) {
return {};
}
return symintlist(i);
}
inline std::vector<double> PythonArgs::getDoublelist(int i) {
PyObject* arg = args[i];
auto tuple = PyTuple_Check(arg);
// NOLINTNEXTLINE(bugprone-branch-clone)
auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
std::vector<double> res(size);
for (const auto idx : c10::irange(size)) {
PyObject* obj =
tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
try {
res[idx] = THPUtils_unpackDouble(obj);
} catch (const std::exception& e) {
throw TypeError(
"%s(): argument '%s' must be %s, but found element of type %s at pos %ld",
signature.name.c_str(),
signature.params[i].name.c_str(),
signature.params[i].type_name().c_str(),
Py_TYPE(obj)->tp_name,
idx + 1);
}
}
return res;
}
inline c10::OptionalArray<double> PythonArgs::doublelistOptional(int i) {
if (!args[i]) {
return {};
}
return this->getDoublelist(i);
}
inline std::vector<double> PythonArgs::doublelist(int i) {
if (!args[i]) {
return {};
}
return this->getDoublelist(i);
}
inline at::ScalarType PythonArgs::scalartypeWithDefault(
int i,
at::ScalarType default_scalartype) {
if (!args[i])
return default_scalartype;
return scalartype(i);
}
inline at::ScalarType PythonArgs::scalartype(int i) {
if (!args[i]) {
auto scalartype = signature.params[i].default_scalartype;
return (scalartype == at::ScalarType::Undefined)
? torch::tensors::get_default_scalar_type()
: scalartype;
}
PyObject* obj = args[i];
if (obj == (PyObject*)&PyFloat_Type) {
return at::ScalarType::Double;
}
if (obj == (PyObject*)&PyBool_Type) {
return at::ScalarType::Bool;
}
if (obj == (PyObject*)&PyLong_Type) {
return at::ScalarType::Long;
}
return reinterpret_cast<THPDtype*>(obj)->scalar_type;
}
inline c10::optional<at::ScalarType> PythonArgs::scalartypeOptional(int i) {
if (!args[i])
return c10::nullopt;
return scalartype(i);
}
inline at::Layout toLayout(PyObject* obj) {
const auto layout = reinterpret_cast<THPLayout*>(obj);
return layout->layout;
}
inline at::Layout PythonArgs::layout(int i) {
if (!args[i])
return signature.params[i].default_layout;
return toLayout(args[i]);
}
inline at::Layout PythonArgs::layoutWithDefault(
int i,
at::Layout default_layout) {
if (!args[i])
return default_layout;
return layout(i);
}
inline c10::optional<at::Layout> PythonArgs::layoutOptional(int i) {
if (!args[i])
return c10::nullopt;
return layout(i);
}
inline at::Device toDevice(PyObject* obj) {
if (THPDevice_Check(obj)) {
const auto device = reinterpret_cast<THPDevice*>(obj);
return device->device;
}
if (THPUtils_checkLong(obj)) {
const auto device_index = THPUtils_unpackLong(obj);
TORCH_CHECK(device_index >= 0, "Device index must not be negative");
return at::Device(DeviceType::CUDA, device_index);
}
const std::string& device_str = THPUtils_unpackString(obj);
return at::Device(device_str);
}
inline at::Device PythonArgs::device(int i) {
if (!args[i]) {
return torch::tensors::get_default_device();
}
return toDevice(args[i]);
}
inline at::Device PythonArgs::deviceWithDefault(
int i,
const at::Device& default_device) {
if (!args[i])
return default_device;
return device(i);
}
inline c10::optional<at::Device> PythonArgs::deviceOptional(int i) {
if (!args[i])
return c10::nullopt;
return device(i);
}
inline at::Dimname PythonArgs::dimname(int i) {
TORCH_INTERNAL_ASSERT(args[i] != nullptr);
return THPDimname_parse(args[i]);
}
inline std::vector<at::Dimname> parseDimnameList(PyObject* arg) {
auto tuple = PyTuple_Check(arg);
// NOLINTNEXTLINE(bugprone-branch-clone)
auto size = tuple ? PyTuple_GET_SIZE(arg) : PyList_GET_SIZE(arg);
// NOLINTNEXTLINE(cppcoreguidelines-init-variables)
std::vector<at::Dimname> res;
res.reserve(size);
for (const auto idx : c10::irange(size)) {
PyObject* obj =
tuple ? PyTuple_GET_ITEM(arg, idx) : PyList_GET_ITEM(arg, idx);
res.push_back(THPDimname_parse(obj));
}
return res;
}
inline c10::optional<std::vector<at::Dimname>> PythonArgs::
toDimnameListOptional(int i) {
if (!args[i])
return c10::nullopt;
return parseDimnameList(args[i]);
}
inline std::vector<at::Dimname> PythonArgs::dimnamelist(int i) {
TORCH_INTERNAL_ASSERT(args[i]);
PyObject* arg = args[i];
auto size = signature.params[i].size;
TORCH_INTERNAL_ASSERT(size == 0 || size == 1);
if (size == 1 && THPUtils_checkDimname(arg)) {
return {THPDimname_parse(arg)};
}
return parseDimnameList(arg);
}
inline at::MemoryFormat PythonArgs::memoryformat(int i) {
if (!args[i])
return at::MemoryFormat::Contiguous;
TORCH_CHECK(
THPMemoryFormat_Check(args[i]),
"memory_format arg must be an instance of the torch.memory_format");
const auto memory_format = reinterpret_cast<THPMemoryFormat*>(args[i]);
return memory_format->memory_format;
}
inline c10::optional<at::MemoryFormat> PythonArgs::memoryformatOptional(int i) {
if (!args[i])
return c10::nullopt;
return memoryformat(i);
}
inline at::QScheme PythonArgs::toQScheme(int i) {
if (!args[i])
return at::kPerTensorAffine;
TORCH_CHECK(
THPQScheme_Check(args[i]),
"qscheme arg must be an instance of the torch.qscheme");
const auto qscheme = reinterpret_cast<THPQScheme*>(args[i]);
return qscheme->qscheme;
}
inline std::string PythonArgs::string(int i) {
return stringWithDefault(i, signature.params[i].default_string);
}
inline std::string PythonArgs::stringWithDefault(
int i,
const std::string& default_str) {
if (!args[i])
return default_str;
return THPUtils_unpackString(args[i]);
}
inline c10::optional<std::string> PythonArgs::stringOptional(int i) {
if (!args[i])
return c10::nullopt;
return THPUtils_unpackString(args[i]);
}
inline c10::string_view PythonArgs::stringView(int i) {
return stringViewWithDefault(i, signature.params[i].default_string);
}
inline c10::string_view PythonArgs::stringViewWithDefault(
int i,
const c10::string_view default_str) {
if (!args[i])
return default_str;
return THPUtils_unpackStringView(args[i]);
}
inline c10::optional<c10::string_view> PythonArgs::stringViewOptional(int i) {
if (!args[i])
return c10::nullopt;
return THPUtils_unpackStringView(args[i]);
}
inline int64_t PythonArgs::toInt64(int i) {
if (!args[i])
return signature.params[i].default_int;
if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
auto& var = THPVariable_Unpack(args[i]);
jit::tracer::ArgumentStash::stashValue(
signature.params[i].name, idx, var, c10::IntType::get());
}
return THPUtils_unpackLong(args[i]);
}
inline c10::SymInt PythonArgs::toSymInt(int i) {
if (!args[i]) {
return c10::SymInt(signature.params[i].default_int);
}
if (traceable && jit::tracer::isTracing() && THPVariable_Check(args[i])) {
auto& var = THPVariable_Unpack(args[i]);
jit::tracer::ArgumentStash::stashValue(
signature.params[i].name, idx, var, c10::IntType::get());
}
return py::cast<c10::SymInt>(py::handle(args[i]));
}
inline int64_t PythonArgs::toInt64WithDefault(int i, int64_t default_int) {
if (!args[i])
return default_int;
return toInt64(i);
}
inline c10::optional<int64_t> PythonArgs::toInt64Optional(int i) {
if (!args[i])
return c10::nullopt;
return toInt64(i);
}
inline c10::optional<c10::SymInt> PythonArgs::toSymIntOptional(int i) {
if (!args[i])
return c10::nullopt;
return toSymInt(i);
}
inline c10::optional<bool> PythonArgs::toBoolOptional(int i) {
if (!args[i]) {
return c10::nullopt;
}
return toBool(i);
}
inline c10::optional<double> PythonArgs::toDoubleOptional(int i) {
if (!args[i]) {
return c10::nullopt;
}
return toDouble(i);
}
inline double PythonArgs::toDouble(int i) {
if (!args[i])
return signature.params[i].default_double;
return THPUtils_unpackDouble(args[i]);
}
inline double PythonArgs::toDoubleWithDefault(int i, double default_double) {
if (!args[i])
return default_double;
return toDouble(i);
}
inline c10::complex<double> PythonArgs::toComplex(int i) {
// NOLINTNEXTLINE(cppcoreguidelines-pro-type-const-cast)
c10::complex<double> default_value = *const_cast<c10::complex<double>*>(
reinterpret_cast<const c10::complex<double>*>(
signature.params[i].default_complex));
if (!args[i])
return default_value;
return THPUtils_unpackComplexDouble(args[i]);
}
inline c10::complex<double> PythonArgs::toComplexWithDefault(
int i,
c10::complex<double> default_value) {
if (!args[i])
return default_value;
return toComplex(i);
}
inline bool PythonArgs::toBool(int i) {
if (!args[i])
return signature.params[i].default_bool;
return args[i] == Py_True;
}
inline bool PythonArgs::toBoolWithDefault(int i, bool default_bool) {
if (!args[i])
return default_bool;
return toBool(i);
}
inline bool PythonArgs::isNone(int i) {
return args[i] == nullptr;
}
inline c10::optional<at::Generator> PythonArgs::generator(int i) {
if (!args[i])
return c10::nullopt;
return reinterpret_cast<THPGenerator*>(args[i])->cdata;
}
inline at::Storage PythonArgs::storage(int i) {
if (!args[i])
return at::Storage();
return createStorage(args[i]);
}
inline at::Storage PythonArgs::storage(
int i,
at::ScalarType& storage_scalar_type,
bool& is_typed_storage) {
at::Storage storage;
if (!args[i]) {
storage = at::Storage();
is_typed_storage = false;
storage_scalar_type = at::ScalarType::Undefined;
} else {
storage =
createStorageGetType(args[i], storage_scalar_type, is_typed_storage);
}
return storage;
}
inline c10::Stream PythonArgs::stream(int i) {
if (!args[i])
return c10::Stream(
c10::Stream::Default::DEFAULT, c10::Device(DeviceType::CPU, -1));
if (!THPStream_Check(args[i])) {
throw TypeError(
"expected Stream object. Got '%s'", Py_TYPE(args[i])->tp_name);
}
return c10::Stream::unpack3(
((THPStream*)args[i])->stream_id,
((THPStream*)args[i])->device_index,
static_cast<DeviceType>(((THPStream*)args[i])->device_type));
}
inline PyObject* PythonArgs::pyobject(int i) {
if (!args[i])
return Py_None;
return args[i];
}
/*
*
* Handle __torch_function__ overrides if we know that there are overloaded
* arguments. All objects stored in r.overloaded_args must have a
* __torch_function__ implementation and the arguments must be ordered in order
* of precedence. Precedence goes from left to right in the order of the
* signature of the function the overloaded arguments were passed to, except
* subclasses are always considered before superclasses.
*
* If the result of calling __torch_function__ is NotImplemented, the
* next implementation in the precedence order is called. If all
* arguments return NotImplemented from their __torch_function__
* implementation, a TypeError is raised in Python.
*
* Assumes overloaded_args has at least one entry. All entries must have
* a __torch_function__ attribute that resolves to a callable that
* accepts a torch API function, a tuple of arguments, and a dict of
* keyword arguments for the torch API function.
*
* It is sufficient to call PythonArgs::has_torch_function before
* calling this function to verify that there are valid arguments
* present. If that is not done then special care must be taken to
* ensure there are arguments that are overloaded with
* __torch_function__.
*
* See torch._overrides.handle_torch_function for the equivalent
* code in the pure-python implementation.
*
* 'r' is a parsed PythonArgs instance, returned from
* PythonArgParser::parse.
*
* 'args' is a reference to the python tuple of arguments to the torch
* API function.
*
* 'kwargs' is a reference to the python dict of keyword arguments to
* the torch API function.
*
* 'torch_api' is a reference to a python torch API namespace.
*
* 'torch_api_function' is the reference to the original torch method, usually,
* we can use torch_api and func_name to get torch_api_function. In some cases,
* e.g., torch custom op, we create the function in C++, if we still use
* torch_api and func_name to fetch original api, a cyclic call will happen.
*
* 'overloaded_args' is the args which have overloaded __torch_function__.
*
* 'func_name' is the named of the original torch method.
*
* TODO: we could use different names for the following 'handle_torch_function'
* instead of overloading.
*
*/
// Used for Tensor methods with arguments.
auto handle_torch_function(
PythonArgs& r,
PyObject* self,
PyObject* args,
PyObject* kwargs,
PyObject* torch_api,
const char* module_name,
const char* func_name_override = nullptr) -> PyObject*;
// Used for functions which needs to parse python args.
auto handle_torch_function(
PythonArgs& r,
PyObject* args,
PyObject* kwargs,
PyObject* torch_api,
const char* module_name,
const char* func_name_override = nullptr) -> PyObject*;
// Used for functions that have no argument parsing.
auto handle_torch_function(
PyObject* self,
const std::string& func_name,
PyObject* args = nullptr,
PyObject* kwargs = nullptr,
PyObject* torch_api = THPVariableClass,
const std::string& module_name = "torch.Tensor") -> PyObject*;
// Used for functions created in C++, e.g., C++ custom op, which doesn't use
// PythonArgParser to get overloaded_args.
enum class TorchFunctionName { TorchFunction, TorchDispatch };
auto TORCH_API handle_torch_function_no_python_arg_parser(
at::ArrayRef<py::handle> overloaded_args,
PyObject* args,
PyObject* kwargs,
const char* func_name,
PyObject* torch_api_function,
const char* module_name,
TorchFunctionName torch_function_name = TorchFunctionName::TorchFunction)
-> PyObject*;
// Used for getters of Tensor properties
auto handle_torch_function_getter(
THPVariable* self,
const std::string& property_name) -> PyObject*;
// Used for setters of Tensor properties.
auto handle_torch_function_setter(
THPVariable* self,
const std::string& property_name,
PyObject* value) -> int;
// Used for __getitem__ and __setitem__
auto handle_torch_function_indexing(
PyObject* self,
PyObject* index,
PyObject* val = nullptr) -> PyObject*;
/*
* Check if the input obj is Tensor type, including its subclass, or overloaded
* type. If the type defines __torch_function__, it also returns true.
* Otherwise returns flase. If the class is not torch.Tensor, and it defines
* __torch_function__, we append obj to overloaded_args.
*
* 'obj': the input argument to be checked
* 'overloaded_args': the vector to append the overloaded args.
*/
bool is_tensor_and_append_overloaded(
PyObject* obj,
std::vector<py::handle>* overloaded_args);
/*
* Check if the input obj is Tensor List or Tensor Tuple type. First check
* whether obj is Tuple or List type, if true, iterate over each element and
* check whether it is Tensor type, including its subclass or overloaded type.
* At the same time, the overloaded arg is appended to the overloaded_args.
*
* 'obj': the input argument to be checked
* 'overloaded_args': the vector to append the overloaded args.
* 'argnum': the number of total arguments of the function being checked.
* 'throw_error': whether throw error if any element in the list or tuple is
* not tensor type or overloaded.
*/
bool is_tensor_list_and_append_overloaded(
PyObject* obj,
std::vector<py::handle>* overloaded_args,
int argnum,
bool throw_error);
/* Given an argument that is definitely a tensor and is definitely overloaded,
* append it to the overloaded arguments list. Use this instead of
* is_tensor_and_append_overloaded in situations where you have a PyObject
* and you know it definitely is a Tensor and it is definitely overloaded.
*
* 'overloaded_args': the vector to append the overloaded args
* 'obj': the input tensor that is overloaded
*/
void append_overloaded_tensor(
std::vector<py::handle>* overloaded_args,
PyObject* obj);
/* Given an argument that is definitely a type and is definitely overloaded,
* append it to the overloaded arguments list. Use this only with
* __torch_dispatch__, where we operate on classes that have a
* __torch_dispatch__ classmethod.
*
* 'overloaded_args': the vector to append the overloaded type
* 'obj': the input class that has a __torch_dispatch__ classmethod.
*/
void append_overloaded_type(
std::vector<py::handle>* overloaded_args,
PyObject* obj);
} // namespace torch