import torch
from torch import Tensor
aten = torch.ops.aten
from typing import Optional, List, Dict, Set
import inspect
from torch.fx.operator_schemas import get_signature_for_torch_op
import warnings
decomposition_table: Dict[str, torch.jit.ScriptFunction] = {}
function_name_set: Set[str] = set()
def check_decomposition_has_type_annotations(f):
inspect_empty = inspect._empty # type: ignore[attr-defined]
sig = inspect.signature(f)
for param in sig.parameters.values():
assert param.annotation != inspect_empty, \
"No signature on param {name} for function {func}".format(name=param.name, func=f.name)
assert sig.return_annotation != inspect_empty, "No return annotation for function {func}".format(func=f.name)
def signatures_match(decomposition_sig, torch_op_sig):
decomp_params = decomposition_sig.parameters
op_params = torch_op_sig.parameters
if len(decomp_params) != len(op_params):
return False
for decomp_param, op_param in zip(decomp_params.values(), op_params.values()):
# can't check full equality yet because not all fields are correcly deduced
# in the torch_op_sig - like default value
# can't check 'kind' bc
# kwarg-only values with defaults not yet supported in TS
inspect_empty = inspect._empty # type: ignore[attr-defined]
for field in ['name', 'annotation']:
if field == 'name' and decomp_param.name == "self":
warnings.warn("PyTorch uses 'input' instead of 'self' on public api")
if getattr(decomp_param, field) != getattr(op_param, field):
return False
decomp_default = decomp_param.default
op_default = op_param.default
# default value not always correctly inferred as being present on torch schema,
# but if specified on both they should be equal
if decomp_default != inspect_empty and op_default != inspect_empty:
if decomp_default != op_default:
return False
return decomposition_sig.return_annotation == torch_op_sig.return_annotation
def register_decomposition(aten_op, registry=None):
def decomposition_decorator(f):
nonlocal registry
if registry is None:
registry = decomposition_table
check_decomposition_has_type_annotations(f)
torch_op_sigs, torch_op_schemas = get_signature_for_torch_op(aten_op, return_schemas=True)
decomposition_sig = inspect.signature(f)
found_index = None
for i, torch_op_sig in enumerate(torch_op_sigs):
if signatures_match(decomposition_sig, torch_op_sig):
found_index = i
break
assert found_index is not None, "Could not find matching signature: " + str(f)
# Need unique name for jit function serialization
assert f.__name__ not in function_name_set, "Duplicated function name {}".format(f.__name__)
function_name_set.add(f.__name__)
scripted_func = torch.jit.script(f)
torch._C._jit_pass_inline(scripted_func.graph)
for _ in range(2):
torch._C._jit_pass_peephole(scripted_func.graph)
torch._C._jit_pass_constant_propagation(scripted_func.graph)
registry[str(torch_op_schemas[found_index])] = scripted_func
return f
return decomposition_decorator
# TODO: replace torch.sigmoid -> aten.sigmoid
@register_decomposition(aten.var)
def var_decomposition(input: Tensor, dim: Optional[List[int]] = None, correction: Optional[int] = None,
keepdim: bool = False) -> Tensor:
if dim is None:
dim_i: List[int] = []
dim = dim_i
if isinstance(dim, (tuple, list)) and len(dim) == 0:
n = input.numel()
else:
n = 1
for dim_i in dim: # type: ignore[assignment]
n *= input.shape[dim_i] # type: ignore[call-overload]
mean = aten.mean(input, dim, True)
sub = input - mean
sq = sub * sub
sum = aten.sum(sq, dim, keepdim)
if correction is not None:
n = n - correction
return sum / n
@register_decomposition(aten.var)
def var(input: Tensor, unbiased: bool = True) -> Tensor:
return var_decomposition(input, correction=(1 if unbiased else 0))