Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torch   python

Repository URL to install this package:

Version: 2.0.1+cpu 

/ native_function_generation.py

from collections import defaultdict

from typing import Dict, List, Optional, Sequence, Tuple, Union

import torchgen.api.dispatcher as dispatcher
from torchgen.api.translate import translate
from torchgen.api.types import Binding, DispatcherSignature, Expr
from torchgen.context import with_native_function
from torchgen.model import (
    Annotation,
    Argument,
    BackendIndex,
    BackendMetadata,
    BaseOperatorName,
    BaseTy,
    BaseType,
    DEFAULT_KERNEL_NAMESPACE,
    DeviceCheckType,
    DispatchKey,
    FunctionSchema,
    NativeFunction,
    NativeFunctionsGroup,
    OperatorName,
    Return,
    SchemaKind,
    Variant,
)
from torchgen.utils import concatMap

# See Note: [Out ops with functional variants that don't get grouped properly]
OUT_OPS_THAT_DONT_GET_GROUPED_PROPERLY = [
    # This has a functional variant, but it's currently marked private.
    # This function should be marked private as well (*_backward ops aren't exposed to python anyway).
    "adaptive_avg_pool3d_backward.grad_input",
    # There's a functional variant, _slow_conv2d_backward.output_mask, that isn't grouped properly.
    # Maybe we can kill this operator in favor of convolution_backward?
    "_slow_conv2d_backward.grad_input",
]


# See Note: [Mutable ops that cannot get an out variant]
MUTABLE_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT = [
    # should be out=?
    "_cummax_helper",
    # should be out=?
    "_cummin_helper",
]

# All of these operators don't have any tensor like returns
FUNCTIONAL_OPS_THAT_CANNOT_GET_AN_OUT_VARIANT = [
    "_assert_async",  # no return
    "_dimI",  # returns an int
    "_dimV",  # returns an int
    "_has_same_storage_numel",  # returns a boolean
    "_linalg_check_errors",  # no return
    "_local_scalar_dense",  # returns a Scalar
    "_nested_tensor_from_mask_left_aligned",  # returns a boolean
    "_nnz",  # returns an int
    "_use_cudnn_ctc_loss",  # returns a boolean
    "_use_cudnn_ctc_loss.Tensor",  # returns a boolean
    "_validate_compressed_sparse_indices",  # no return
    "allclose",  # returns a boolean
    "dense_dim",  # returns an int
    "equal",  # returns a boolean
    "is_coalesced",  # returns an boolean
    "is_pinned",  # returns a boolean
    "is_same_size",  # returns a boolean
    "is_set_to",  # returns a boolean
    "q_per_channel_axis",  # returns an int
    "q_scale",  # returns a float
    "q_zero_point",  # returns an int
    "qscheme",  # returns a QScheme
    "record_stream",  # no return
    "sparse_dim",  # returns an int
    "_nested_tensor_offsets",  # returns a vector of ints
    "_chunk_grad_outputs_efficient_attention",  # returns a bool
    "_fused_sdp_choice",  # returns an int
]

INPLACE_OPS_THAT_DONT_GET_GROUPED_PROPERLY = [
    # polygamma and polygamma.out both exist, but have a
    # pre-self arg (while polygamma_ does not)
    # We should either fix this schema so it can be grouped properly,
    # or allow the codegen to generate new functional/out= NativeFunctions for this op
    # (which would require changing its overload name to prevent overload ambiguity).
    "polygamma_"
]

# Groups "similar" NativeFunctions together
# example add.Tensor, add_.Tensor, add.out
# "similar" NativeFunctions are all expected to have an identical `signature()`,
# But have differing SchemaKinds.
def pre_group_native_functions(
    native_functions: Sequence[NativeFunction],
) -> Dict[FunctionSchema, Dict[SchemaKind, NativeFunction]]:
    pre_grouped_native_functions: Dict[
        FunctionSchema, Dict[SchemaKind, NativeFunction]
    ] = defaultdict(dict)
    for f in native_functions:
        d = pre_grouped_native_functions[f.func.signature()]
        assert f.func.kind() not in d
        d[f.func.kind()] = f
    return pre_grouped_native_functions


# Returns the out variant overload name given a base function overload name
def get_expected_out_variant_overload_name(overload_name: Optional[str]) -> str:
    return "out" if not overload_name else f"{overload_name}_out"


# Helper function: given an inplace FunctionSchema, generate its corresponding out= variant
# Example before:
#   _add_relu_.Scalar(Tensor(a!) self, Scalar other, Scalar alpha=1) -> Tensor(a!)
# Example after:
#   _add_relu.Scalar_out(Tensor self, Scalar other, Scalar alpha=1, *, Tensor(a!) out)
def self_to_out_signature(func: FunctionSchema) -> FunctionSchema:
    # Generating an out= schema from an inplace schema.
    assert func.kind() == SchemaKind.inplace
    assert func.arguments.self_arg is not None
    # The new out= schema has:
    # - a new out argument with the same type as "func" (but with a mutable annotation)
    # - The returns (if any) now alias the out= argument instead of "func"
    # - an "out" overload name
    return FunctionSchema(
        name=func.name.remove_inplace().with_overload(
            get_expected_out_variant_overload_name(func.name.overload_name)
        ),
        arguments=func.arguments.remove_self_annotation().with_out_args(
            [
                Argument(
                    name="out",
                    type=func.arguments.self_arg.argument.type,
                    default=None,
                    annotation=func.arguments.self_arg.argument.annotation,
                )
            ]
        ),
        returns=func.returns,
    )


# Helper function: given a functional FunctionSchema, generate its corresponding out= variant
# Example before:
#   _to_copy(Tensor self, *, ScalarType? dtype=None, Layout? layout=None, Device? device=None,
#       bool? pin_memory=None, bool non_blocking=False, MemoryFormat? memory_format=None) -> Tensor
# Example after:
#   _to_copy._out(Tensor self, *, bool non_blocking=False, MemoryFormat? memory_format=None,
#       Tensor(a!) out) -> Tensor(a!)
def functional_to_out_signature(func: FunctionSchema) -> FunctionSchema:
    # Generating an out= schema from a functional schema.
    assert func.kind() == SchemaKind.functional

    new_returns, new_out_args = generate_out_args_from_schema(func)
    # The new out= schema has:
    # - one or more new out argument(s) with the same type as returns (but with a mutable annotation)
    # - The returns now alias the out= arguments
    # - an "_out" overload name
    return FunctionSchema(
        name=func.name.with_overload(
            get_expected_out_variant_overload_name(func.name.overload_name)
        ),
        arguments=func.arguments.signature().with_out_args(
            new_out_args,
        ),
        returns=tuple(new_returns),
    )


# Helper function: given a function schema, generate corresponding out arguments, also the updated return annotations.
def generate_out_args_from_schema(
    func: FunctionSchema,
) -> Tuple[List[Return], List[Argument]]:
    # More of a sanity check - our existing restrictions on schemas should enforce that
    # mutable schema kinds never return their mutable arguments.
    assert not any(
        r.annotation is not None and r.annotation.is_write for r in func.returns
    )

    tensorlike_rets = [r for r in func.returns if r.type.is_tensor_like()]
    assert len(tensorlike_rets) > 0

    used_annotations = concatMap(
        lambda a: [] if a.annotation is None else a.annotation.alias_set,
        func.arguments.flat_all,
    )
    valid_annotations = [
        x for x in "abcdefghijklmnopqrstuvwxyz" if x not in used_annotations
    ]

    all_rets_are_tensors = all(r.type == BaseType(BaseTy.Tensor) for r in func.returns)

    new_out_args: List[Argument] = []
    # The end result of new_returns is that:
    # - If every return is a plain tensor, then the new returns == the old returns, but with the out= alias annotations added.
    # - Otherwise, none of the out arguments show up in the returns (and we're only left with non-tensor-like returns, if any).
    new_returns: List[Return] = []
    for (i, r) in enumerate(func.returns):
        if r.type.is_tensor_like():
            new_out = Argument(
                name="out" if len(func.returns) == 1 else f"out{i}",
                type=r.type,
                default=None,
                annotation=Annotation.parse(f"{valid_annotations[i]}!"),
            )
            new_out_args.append(new_out)
            if all_rets_are_tensors:
                # The convention for out= schemas is that they only return their out arguments
                # if the return is a plain Tensor (or if it's a tuple of plain Tensors)
                new_ret = Return(
                    name=None, type=new_out.type, annotation=new_out.annotation
                )
                new_returns.append(new_ret)
        else:
            new_returns.append(r)
    return new_returns, new_out_args


# Helper function: given a mutable FunctionSchema, generate its corresponding out= variant
# Example before:
#   _fused_moving_avg_obs_fq_helper(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False) -> (Tensor output, Tensor mask)  # noqa: B950
# Example after:
#   _fused_moving_avg_obs_fq_helper._out(Tensor self, Tensor observer_on, Tensor fake_quant_on, Tensor(a!) running_min, Tensor(b!) running_max, Tensor(c!) scale, Tensor(d!) zero_point, float averaging_const, int quant_min, int quant_max, int ch_axis, bool per_row_fake_quant=False, bool symmetric_quant=False, *, Tensor(e!) out0, Tensor(f!) out1) -> (Tensor(e!), Tensor(f!))  # noqa: B950
def mutable_to_out_signature(func: FunctionSchema) -> FunctionSchema:
    # Generating an out= schema from a mutable schema.
    assert func.kind() == SchemaKind.mutable
    # The new out= schema has:
    # - Any non-aliased tensor-like returns are converted to mutable, aliased out= arguments
    #   (if the argument is a tensor then we also return it for method chaining,
    #   otherwise we return nothing)
    # - an "out" overload name
    #
    # Note that:
    # (1) This also means that we can *only* generate an out= variant from a mutable schema
    #     if the mutable schema has at least one tensor-like non-aliasing return.
    # (2) The generated out= variant still has mutable positional arguments,
    #     but if necessary we could probably add another out= variant that also
    #     functionalizes the mutable arguments (a functional_out variant)

    new_returns, new_out_args = generate_out_args_from_schema(func)

    return FunctionSchema(
        name=func.name.remove_inplace().with_overload(
            get_expected_out_variant_overload_name(func.name.overload_name)
        ),
        arguments=func.arguments.with_out_args(new_out_args),
        returns=tuple(new_returns),
    )


# This function, given function of one SchemaKind, as well as a target SchemaKind,
# generates a new NativeFunction with the same properties, but using the target SchemaKind.
# We only actually generate functions for either functional or out= SchemaKinds.
# This function returns a tuple, with:
# - The generated NativeFunction
# - a dictionary of `BackendIndex` objects, describing which dispatch keys
#   we will generate kernels for, for the new NativeFunction.
#   Details are in the function, but we only generate composite kernels (in some cases) today.
def generate_function(
    f: NativeFunction, k: SchemaKind
) -> Tuple[NativeFunction, Dict[DispatchKey, Dict["OperatorName", "BackendMetadata"]]]:
    from torchgen.api import cpp

    if k == SchemaKind.functional:
        assert f.func.kind() != SchemaKind.functional
        # The new "functional" NativeFunction has:
        # - any mutable arguments have been converted into (immutable) returns.
        #   (if a mutable argument was not also a return, it gets converted to one)
        # - "_functional" appended to the base name, ONLY IF this op has a mutable variant.
        #   See Note [Overload Ambiguity With Functional Variants]
        # The default grouping logic in signature() actually already does this,
        # so we can piggy-back off it (but we still want return names)
        func = f.func.signature(keep_return_names=True).with_name(
            OperatorName(
                name=BaseOperatorName(
                    base=f.func.name.name.base,
                    inplace=False,
                    dunder_method=f.func.name.name.dunder_method,
                    # See Note [Overload Ambiguity With Functional Variants]
                    functional_overload=f.func.kind() == SchemaKind.mutable,
                ),
                overload_name=f.func.name.overload_name,
            )
        )
    elif k == SchemaKind.out:
        # We generate out= ops mostly just so that we can pair up NativeFunctions into groups easily,
        # but at least today, there is no good reason to actually use them.
        # we'll generate a dispatcher entry for them, but won't actually register any kernels for them.
        if f.func.kind() == SchemaKind.inplace:
            func = self_to_out_signature(f.func)
        elif f.func.kind() == SchemaKind.mutable:
            func = mutable_to_out_signature(f.func)
        elif f.func.kind() == SchemaKind.functional:
            func = functional_to_out_signature(f.func)
        else:
            raise AssertionError(
                "We only bother generating out= functions from either inplace or mutable or functional variants"
            )
    else:
        raise AssertionError(
            "We currently only generate either functional or out= NativeFunctions"
        )

    # Generated kernel naming convention for out: <op_name>_<overload_name>. The reason for this is to
    # disambiguate operator with the same name but different overload name, e.g., `randn.names_out` and
    # `randn.generator_with_names_out`.
    kernel_name = (
        func.name.unambiguous_name()
        if func.kind() == SchemaKind.out
        else cpp.name(func)
    )
    if f.func.has_symint():
        kernel_name += "_symint"
    backend_metadata = {
        DispatchKey.CompositeExplicitAutograd: {
            func.name: BackendMetadata(
                kernel=kernel_name,
                structured=False,
                cpp_namespace=DEFAULT_KERNEL_NAMESPACE,
            )
        }
    }
    tags = {"generated"} | set(f.tags & {"nondeterministic_seeded", "view_copy"})

    return (
        NativeFunction(
            func=func,
            use_const_ref_for_mutable_tensors=f.use_const_ref_for_mutable_tensors,
            # These generated fn's aren't meant to be user friendly- don't generate methods.
            variants={Variant.function},
            structured=False,
            structured_delegate=None,
            structured_inherits=None,
            precomputed=None,
            autogen=[],
            ufunc_inner_loop={},
            manual_kernel_registration=False,
            manual_cpp_binding=False,
            python_module=None,
            category_override=None,
            device_guard=False,
            device_check=DeviceCheckType.NoCheck,
            loc=f.loc,
            cpp_no_default_args=set(),
            is_abstract=f.is_abstract,
            has_composite_implicit_autograd_kernel=False,
Loading ...