"""Functionality for Python <-> C++ frontend inter-op."""
from torch import nn
class OrderedDictWrapper:
"""
A wrapper around a C++ OrderedDict that dynamically evaluates the
OrderedDict getter on a bound C++ module, such that new changes on the C++
side are picked up. Otherwise accessing e.g. ``cpp_module._parameters`` just
once would get a frozen copy of the parameters at the time of access.
``torch.nn.Module`` accesses ``_parameters`` et al. via ``self.__dict__`` so
using properties does not work.
"""
def __init__(self, cpp_module, attr):
self.cpp_module = cpp_module
self.attr = attr
@property
def cpp_dict(self):
return getattr(self.cpp_module, self.attr)
# Magic methods cannot be assigned dynamically and bypass ``getattr``, so we
# must manually override them.
def items(self):
return self.cpp_dict.items()
def keys(self):
return self.cpp_dict.keys()
def values(self):
return self.cpp_dict.values()
def __iter__(self):
return self.cpp_dict.__iter__()
def __len__(self):
return self.cpp_dict.__len__()
def __contains__(self, key):
return self.cpp_dict.__contains__(key)
def __getitem__(self, key):
return self.cpp_dict.__getitem__(key)
class ModuleWrapper(nn.Module):
"""
A subclass of ``torch.nn.Module`` that wraps a C++ frontend module and
delegates all access.
"""
def __init__(self, cpp_module):
# Assign before the super class constructor so ``self.training`` can be
# assigned to in the super class constructor.
self.cpp_module = cpp_module
super().__init__()
self._parameters = OrderedDictWrapper(cpp_module, "_parameters") # type: ignore[assignment]
self._buffers: OrderedDictWrapper = OrderedDictWrapper(cpp_module, "_buffers") # type: ignore[assignment]
self._modules: OrderedDictWrapper = OrderedDictWrapper(cpp_module, "_modules") # type: ignore[assignment]
for attr in dir(cpp_module):
# Skip magic methods and the three attributes above.
if not attr.startswith("_"):
setattr(self, attr, getattr(self.cpp_module, attr))
def _apply(self, fn):
for param in self.parameters():
# Tensors stored in modules are graph leaves, and we don't
# want to create copy nodes, so we have to unpack the data.
param.data = fn(param.data)
if param._grad is not None:
param._grad.data = fn(param._grad.data)
for buf in self.buffers():
buf.data = fn(buf.data)
return self
# nn.Module defines training as a boolean
@property # type: ignore[override]
def training(self):
return self.cpp_module.training
@training.setter
def training(self, mode):
self.cpp_module.train(mode)
def __repr__(self):
return self.cpp_module.__repr__()