from torch import Tensor
from torch.types import _size, _dtype
from typing import Any, Optional, Tuple, Dict, List, Callable, Sequence, Union
from .common_types import _ratio_any_t, _size_any_t, _size_1_t, _size_2_t, _size_3_t, _size_2_opt_t, _size_3_opt_t
# 'TypedDict' is a new accepted type that represents a dictionary with a fixed set of allowed keys.
# It is standards-track but not in `typing` yet. We leave this hear to be uncommented once the feature
# is wide-spread.
# from mypy_extensions import TypedDict
# GRID_SAMPLE_INTERPOLATION_MODES = TypedDict('GRID_SAMPLE_INTERPOLATION_MODES', {'bilinear': int, 'nearest': int})
# GRID_SAMPLE_PADDING_MODES = TypedDict('GRID_SAMPLE_PADDING_MODES', {'zeros': int, 'border': int, 'reflection': int})
GRID_SAMPLE_INTERPOLATION_MODES = Dict[str, int]
GRID_SAMPLE_PADDING_MODES = Dict[str, int]
# These stubs were generated by running stubgen (`stubgen --parse-only functional.py`), followed by manual cleaning.
#
# The 'BroadcastingList{1,2,3}' types were replaced by `_size` or _output_ratio, as appropriate.
# This was necessary since the JIT uses BroadcastingList* types but static checking with mypy etc requires a `Sequence`
# type. There is no way to express the expected lengths of these lists in the current Python typing system.
#
# Functions created via `_add_docstr` in `functional.py` where merely typed as `Any` by `stubgen`, so those were
# deleted from the stub and replaced by generated declarations. See `gen_pyi` for the implementation of the code
# generation logic for those functions. In the future, it might be worth looking into using the mypy plugin system
# to encode the type semantics of `_add_docstr`, should that system ever become widespread.
def fractional_max_pool2d_with_indices(input: Tensor, kernel_size: _size, output_size: Optional[_size] = ...,
output_ratio: Optional[_ratio_any_t] = ..., return_indices: bool = ...,
_random_samples: Optional[Tensor] = ...) -> Tuple[Tensor, Tensor]: ...
def fractional_max_pool3d_with_indices(input: Tensor, kernel_size: _size, output_size: Optional[_size] = ...,
output_ratio: Optional[_ratio_any_t] = ..., return_indices: bool = ...,
_random_samples: Optional[Tensor] = ...) -> Tuple[Tensor, Tensor]: ...
def max_pool1d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ...,
dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[
Tensor, Tensor]: ...
def max_pool2d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ...,
dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[
Tensor, Tensor]: ...
def max_pool3d_with_indices(input: Tensor, kernel_size: _size, stride: Optional[_size] = ..., padding: _size = ...,
dilation: _size = ..., ceil_mode: bool = ..., return_indices: bool = ...) -> Tuple[
Tensor, Tensor]: ...
def max_unpool1d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ...,
padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ...
def max_unpool2d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ...,
padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ...
def max_unpool3d(input: Tensor, indices: Tensor, kernel_size: _size, stride: Optional[_size] = ...,
padding: _size = ..., output_size: Optional[_size] = ...) -> Tensor: ...
def lp_pool1d(input: Tensor, norm_type: float, kernel_size: _size_1_t, stride: Union[Optional[_size], Optional[int]] = ...,
ceil_mode: bool = ...) -> Tensor: ...
def lp_pool2d(input: Tensor, norm_type: float, kernel_size: _size_2_t, stride: Union[Optional[_size], Optional[int]] = ...,
ceil_mode: bool = ...) -> Tensor: ...
def adaptive_max_pool1d_with_indices(input: Tensor, output_size: _size, return_indices: bool = ...) -> Tuple[
Tensor, Tensor]: ...
def adaptive_max_pool2d_with_indices(input: Tensor, output_size: _size_2_opt_t, return_indices: bool = ...) -> Tuple[
Tensor, Tensor]: ...
def adaptive_max_pool3d_with_indices(input: Tensor, output_size: _size_3_opt_t, return_indices: bool = ...) -> Tuple[
Tensor, Tensor]: ...
def adaptive_avg_pool1d(input: Tensor, output_size: _size_1_t) -> Tensor: ...
def adaptive_avg_pool2d(input: Tensor, output_size: _size_2_opt_t) -> Tensor: ...
def adaptive_avg_pool3d(input: Tensor, output_size: _size_3_opt_t) -> Tensor: ...
def dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
def alpha_dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
def dropout1d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
def dropout2d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
def dropout3d(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
def feature_alpha_dropout(input: Tensor, p: float = ..., training: bool = ..., inplace: bool = ...) -> Tensor: ...
def threshold(input: Tensor, threshold: float, value: float, inplace: bool = ...) -> Tensor: ...
def relu(input: Tensor, inplace: bool = ...) -> Tensor: ...
def glu(input: Tensor, dim: int = ...) -> Tensor: ...
def hardtanh(input: Tensor, min_val: float = ..., max_val: float = ..., inplace: bool = ...) -> Tensor: ...
def relu6(input: Tensor, inplace: bool = ...) -> Tensor: ...
def elu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...
def selu(input: Tensor, inplace: bool = ...) -> Tensor: ...
def celu(input: Tensor, alpha: float = ..., inplace: bool = ...) -> Tensor: ...
def leaky_relu(input: Tensor, negative_slope: float = ..., inplace: bool = ...) -> Tensor: ...
def prelu(input: Tensor, weight: Tensor) -> Tensor: ...
def rrelu(input: Tensor, lower: float = ..., upper: float = ..., training: bool = ...,
inplace: bool = ...) -> Tensor: ...
def gelu(input: Any, approximate: str = ...): ...
def hardshrink(input: Tensor, lambd: float = ...) -> Tensor: ...
def tanhshrink(input: Any): ...
def softsign(input: Any): ...
def softmin(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., dtype: Optional[_dtype] = ...) -> Tensor: ...
def softmax(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ..., dtype: Optional[_dtype] = ...) -> Tensor: ...
def gumbel_softmax(logits: Tensor, tau: float = ..., hard: bool = ..., eps: float = ..., dim: int = ...) -> Tensor: ...
def log_softmax(input: Tensor, dim: Optional[int] = ..., _stacklevel: int = ...,
dtype: Optional[_dtype] = ...) -> Tensor: ...
def tanh(input: Any): ...
def sigmoid(input: Any) -> Tensor: ...
def hardsigmoid(input: Tensor, inplace: bool = False) -> Tensor: ...
def linear(input: Tensor, weight: Tensor, bias: Optional[Tensor] = ...) -> Tensor: ...
def bilinear(input1: Tensor, input2: Tensor, weight: Tensor, bias: Optional[Tensor] = ...) -> Tensor: ...
def silu(input: Tensor, inplace: bool = False) -> Tensor: ...
def mish(input: Tensor, inplace: bool = False) -> Tensor: ...
def hardswish(input: Tensor, inplace: bool = False) -> Tensor: ...
def embedding(input: Tensor, weight: Tensor, padding_idx: Optional[int] = ..., max_norm: Optional[float] = ...,
norm_type: float = ..., scale_grad_by_freq: bool = ..., sparse: bool = ...) -> Tensor: ...
def embedding_bag(input: Tensor, weight: Tensor, offsets: Optional[Tensor] = ..., max_norm: Optional[float] = ...,
norm_type: float = ..., scale_grad_by_freq: bool = ..., mode: str = ...,
sparse: bool = ..., per_sample_weights: Optional[Tensor] = ...,
include_last_offset: bool = ..., padding_idx: Optional[int] = ...) -> Tensor: ...
def batch_norm(input: Tensor, running_mean: Optional[Tensor], running_var: Optional[Tensor],
weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., training: bool = ...,
momentum: float = ..., eps: float = ...) -> Tensor: ...
def instance_norm(input: Tensor, running_mean: Optional[Tensor] = ..., running_var: Optional[Tensor] = ...,
weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ..., use_input_stats: bool = ...,
momentum: float = ..., eps: float = ...) -> Tensor: ...
def layer_norm(input: Tensor, normalized_shape: Sequence[int], weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ...,
eps: float = ...) -> Tensor: ...
def group_norm(input: Tensor, num_groups: int, weight: Optional[Tensor] = ..., bias: Optional[Tensor] = ...,
eps: float = ...) -> Tensor: ...
def local_response_norm(input: Tensor, size: int, alpha: float = ..., beta: float = ..., k: float = ...) -> Tensor: ...
def ctc_loss(log_probs: Tensor, targets: Tensor, input_lengths: Tensor, target_lengths: Tensor, blank: int = ...,
reduction: str = ..., zero_infinity: bool = ...) -> Tensor: ...
def nll_loss(input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ...,
ignore_index: int = ..., reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
def poisson_nll_loss(input: Tensor, target: Tensor, log_input: bool = ..., full: bool = ...,
size_average: Optional[bool] = ..., eps: float = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def gaussian_nll_loss(input: Tensor, target: Tensor, var: Tensor, full: Optional[bool] = ...,
eps: Optional[float] = ..., reduction: Optional[str] = ...) -> Tensor: ...
def kl_div(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ..., log_target: bool = ...) -> Tensor: ...
def cross_entropy(input: Tensor, target: Tensor, weight: Optional[Tensor] = ..., size_average: Optional[bool] = ...,
ignore_index: int = ..., reduce: Optional[bool] = ..., reduction: str = ...,
label_smoothing: float = ...) -> Tensor: ...
def binary_cross_entropy(input: Tensor, target: Tensor, weight: Optional[Tensor] = ...,
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def binary_cross_entropy_with_logits(input: Tensor, target: Tensor, weight: Optional[Tensor] = ...,
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ..., pos_weight: Optional[Tensor] = ...) -> Tensor: ...
def smooth_l1_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ..., beta: float = ...) -> Tensor: ...
def huber_loss(input: Tensor, target: Tensor, reduction: str = ..., delta: float = ...) -> Tensor: ...
def l1_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def mse_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def margin_ranking_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: float = ...,
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def hinge_embedding_loss(input: Tensor, target: Tensor, margin: float = ..., size_average: Optional[bool] = ...,
reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
def multilabel_margin_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ...,
reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
def soft_margin_loss(input: Tensor, target: Tensor, size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def multilabel_soft_margin_loss(input: Tensor, target: Tensor, weight: Optional[Tensor] = ...,
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def cosine_embedding_loss(input1: Tensor, input2: Tensor, target: Tensor, margin: float = ...,
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def multi_margin_loss(input: Tensor, target: Tensor, p: int = ..., margin: float = ..., weight: Optional[Tensor] = ...,
size_average: Optional[bool] = ..., reduce: Optional[bool] = ...,
reduction: str = ...) -> Tensor: ...
def upsample(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., mode: str = ...,
align_corners: Optional[Any] = ...): ...
def interpolate(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ..., mode: str = ...,
align_corners: Optional[Any] = ..., recompute_scale_factor: Optional[Any] = ...,
antialias: bool = ...): ...
def upsample_nearest(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ...): ...
def upsample_bilinear(input: Any, size: Optional[Any] = ..., scale_factor: Optional[Any] = ...): ...
def grid_sample(input: Tensor, grid: Tensor, mode: str = ..., padding_mode: str = ...,
align_corners: Optional[Any] = ...) -> Tensor: ...
def affine_grid(theta: Tensor, size: List[int], align_corners: Optional[Any] = ...) -> Tensor: ...
def pad(input: Tensor, pad: Sequence[int], mode: str = ..., value: float = ...) -> Tensor: ...
def pairwise_distance(x1: Tensor, x2: Tensor, p: float = ..., eps: float = ..., keepdim: bool = ...) -> Tensor: ...
def triplet_margin_loss(anchor: Tensor, positive: Tensor, negative: Tensor, margin: float = ..., p: float = ...,
eps: float = ..., swap: bool = ..., size_average: Optional[bool] = ...,
reduce: Optional[bool] = ..., reduction: str = ...) -> Tensor: ...
def triplet_margin_with_distance_loss(anchor: Tensor, positive: Tensor, negative: Tensor, *,
distance_function: Optional[Callable[[Tensor, Tensor], Tensor]]=...,
margin: float=..., swap: bool=..., reduction: str=...) -> Tensor: ...
def normalize(input: Tensor, p: float = ..., dim: int = ..., eps: float = ...,
out: Optional[Tensor] = ...) -> Tensor: ...
Loading ...