Learn more  » Push, build, and install  RubyGems npm packages Python packages Maven artifacts PHP packages Go Modules Bower components Debian packages RPM packages NuGet packages

edgify / torch   python

Repository URL to install this package:

Version: 2.0.1+cpu 

/ nn / quantized / modules / __init__.py

r"""Quantized Modules

Note::
    The `torch.nn.quantized` namespace is in the process of being deprecated.
    Please, use `torch.ao.nn.quantized` instead.
"""

from torch.ao.nn.quantized.modules.activation import ReLU6, Hardswish, ELU, LeakyReLU, Sigmoid, Softmax, MultiheadAttention, PReLU
from torch.ao.nn.quantized.modules.batchnorm import BatchNorm2d, BatchNorm3d
from torch.ao.nn.quantized.modules.conv import Conv1d, Conv2d, Conv3d
from torch.ao.nn.quantized.modules.conv import ConvTranspose1d, ConvTranspose2d, ConvTranspose3d
from torch.ao.nn.quantized.modules.dropout import Dropout
from torch.ao.nn.quantized.modules.embedding_ops import Embedding, EmbeddingBag
from torch.ao.nn.quantized.modules.functional_modules import FloatFunctional, FXFloatFunctional, QFunctional
from torch.ao.nn.quantized.modules.linear import Linear
from torch.ao.nn.quantized.modules.normalization import LayerNorm, GroupNorm, InstanceNorm1d, InstanceNorm2d, InstanceNorm3d
from torch.ao.nn.quantized.modules.rnn import LSTM

from torch.ao.nn.quantized.modules import MaxPool2d
from torch.ao.nn.quantized.modules import Quantize, DeQuantize

# The following imports are needed in case the user decides
# to import the files directly,
# s.a. `from torch.nn.quantized.modules.conv import ...`.
# No need to add them to the `__all__`.
from torch.ao.nn.quantized.modules import activation
from torch.ao.nn.quantized.modules import batchnorm
from torch.ao.nn.quantized.modules import conv
from torch.ao.nn.quantized.modules import dropout
from torch.ao.nn.quantized.modules import embedding_ops
from torch.ao.nn.quantized.modules import functional_modules
from torch.ao.nn.quantized.modules import linear
from torch.ao.nn.quantized.modules import normalization
from torch.ao.nn.quantized.modules import rnn
from torch.ao.nn.quantized.modules import utils

__all__ = [
    'BatchNorm2d',
    'BatchNorm3d',
    'Conv1d',
    'Conv2d',
    'Conv3d',
    'ConvTranspose1d',
    'ConvTranspose2d',
    'ConvTranspose3d',
    'DeQuantize',
    'ELU',
    'Embedding',
    'EmbeddingBag',
    'GroupNorm',
    'Hardswish',
    'InstanceNorm1d',
    'InstanceNorm2d',
    'InstanceNorm3d',
    'LayerNorm',
    'LeakyReLU',
    'Linear',
    'LSTM',
    'MultiheadAttention',
    'Quantize',
    'ReLU6',
    'Sigmoid',
    'Softmax',
    'Dropout',
    'PReLU',
    # Wrapper modules
    'FloatFunctional',
    'FXFloatFunctional',
    'QFunctional',
]